Abstract:
An agent apparatus to relay operation control information between at least one remote controller and at least one electrical apparatus, the agent apparatus includes a communication unit to receive operation control information, of the at least one electrical apparatus, transmitted from the remote controller and to transmit the operation control information to the at least one electrical apparatus, a controller to learn the received operation control information of the at least one of electrical apparatus to generate a macro and to control output of the generated macro, and a storage unit to store the operation control information of the at least one electrical apparatus and the generated macro.
Abstract:
The present invention is directed toward a system and process that controls a group of networked electronic components using a multimodal integration scheme in which inputs from a speech recognition subsystem, gesture recognition subsystem employing a wireless pointing device and pointing analysis subsystem also employing the pointing device, are combined to determine what component a user wants to control and what control action is desired. In this multimodal integration scheme, the desired action concerning an electronic component is decomposed into a command and a referent pair. The referent can be identified using the pointing device to identify the component by pointing at the component or an object associated with it, by using speech recognition, or both. The command may be specified by pressing a button on the pointing device, by a gesture performed with the pointing device, by a speech recognition event, or by any combination of these inputs.
Abstract:
A communication interface and a device control, management and monitoring system are provided to enable the networking of and communication between a multiple devices operating under different protocols. The communication interface may act as a translator or protocol converter that reformats transmissions from one protocol to another based on protocol compatibility between the recipient and transmitting devices. The device control and monitoring system may store predefined rules that are triggered when specified conditions associated with the networked devices are detected. The rules may specify an action to take such as transmitting a discount offer to a user or turning off a light. According to one or more arrangements, the communication interface may act as an intermediary between the networked devices and the device control system so that the device control system is not required to understand or be compatible with the various other protocols used by the networked devices.
Abstract:
A solar photovoltaic monitoring system for monitoring and controlling a solar photovoltaic inverter is provided. The system includes a wireless transceiver coupled to a solar photovoltaic inverter that includes a device monitor for monitoring and controlling the inverter. The device monitor generates monitoring data defining a status of the system and transmits the data by using the transceiver coupled to the inverter. The system also includes a wireless repeater for receiving data from the inverter and retransmitting the data and a transceiver coupled to a gateway capable of communicating the received retransmitted data to a monitoring station. The gateway also transmits control data received from the monitoring station. The repeater receives control data from the gateway and retransmits data to the inverter. The inverter receives the retransmitted control data and controls its operation based on the received data.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, a gateway comprising a controller to transmit a first RF signal to a remote control device, wherein the first radio-frequency signal is received by a radio-frequency identification (RFID) tag associated with the remote control device, receive at each of a plurality of receivers operably coupled to the gateway a second RF signal from the RFID tag of the remote control device in response to the first RF signal, determine an approximate location of the remote control device based on at least a portion of the second RF signals received by the plurality of receivers, and transmit a signal to a set-top-box, wherein the signal comprises the approximate location of the remote control device, and wherein the set-top-box displays the approximate location of the remote control device. Other embodiments are disclosed.
Abstract:
A method, system, apparatus and article are described for managing enhanced multicast broadcast services. In some embodiments, for example, a first connection may be established using a first wireless communication protocol, scheduling information for one or more multicast or broadcast data services may be received using the first wireless communication protocol, one or more of the multicast or broadcast data services may be selected, and a second connection using a second wireless communication protocol may be established to receive the one or more selected multicast or broadcast data services. Other embodiments are described and claimed.
Abstract:
The present invention is directed toward a system and process that controls a group of networked electronic components using a multimodal integration scheme in which inputs from a speech recognition subsystem, gesture recognition subsystem employing a wireless pointing device and pointing analysis subsystem also employing the pointing device, are combined to determine what component a user wants to control and what control action is desired. In this multimodal integration scheme, the desired action concerning an electronic component is decomposed into a command and a referent pair. The referent can be identified using the pointing device to identify the component by pointing at the component or an object associated with it, by using speech recognition, or both. The command may be specified by pressing a button on the pointing device, by a gesture performed with the pointing device, by a speech recognition event, or by any combination of these inputs.
Abstract:
Systems and method for controlling a device are provided, including at least one controlling device and at least one controlled device. The controlling system includes a first controlling device which has controlling authority over the controlled device and a second controlling device which requests and receives the controlling authority over the controlled device from the first controlling device. Therefore, a controlling device may more easily and intuitively receive controlling authority from other devices.
Abstract:
A resource metric quantization is described that has use for resources of wireless data communications system. In one example the quantization include measuring a signal parameter for a plurality of frequency partitions, setting a first resource metric for a first frequency partition equal to a first value, determining a second and a third resource metric for a second and third frequency partition, respectively, based on comparing the measured signal parameter for the second and third frequency partitions to the measured signal parameter for the first partition, encoding a second and a third resource metric, and transmitting the encoded resource metrics to a remote wireless station.
Abstract:
A receiving device embodiment receives a user command from an external source. The user command is directed to a remote target destination. A first interactive programming command communicator embodiment generates a mobile device command from the received user command, and communicates the mobile device command to a mobile device. A second interactive programming command communicator embodiment receives the mobile device command from the receiving device. A target destination is identified from information in the mobile device command, and information from the mobile device command is communicated to the target destination.