Abstract:
This disclosure generally relates to an automotive drone deployment system that includes at least a vehicle and a deployable drone that is configured to attach and detach from the vehicle. More specifically, the disclosure describes the vehicle and drone remaining in communication with each other to exchange information while the vehicle is being operated in an autonomous driving mode so that the vehicle's performance under the autonomous driving mode is enhanced.
Abstract:
An unmanned aircraft configured to fall or crash in a controlled and safe manner. The unmanned aircraft includes a drive system to thrust the unmanned aircraft during a flight, and a reverse thrust system to reverse thrust the unmanned aircraft during a landing. The unmanned aircraft further includes a controller operationally coupled to the reverse thrust system, and a detector to detect and notify to the controller that the unmanned aircraft is in an uncontrolled situation during the flight. The controller is adapted to activate the reverse thrust system in order to reverse thrust the unmanned aircraft in-flight upon notification from the detector that the unmanned aircraft is in an uncontrolled situation.
Abstract:
An aircraft for unmanned aviation is described. The aircraft includes an airframe, a pair of fins attached to a rear portion of the airframe, a pair of dihedral braces attached to a bottom portion of the airframe, a first thrust vectoring module and a second thrust vectoring module, and an electronics module. The electronics module provides commands to the two thrust vectoring modules. The two thrust vectoring modules are configured to provide lateral and longitudinal control to the aircraft by directly controlling a thrust vector for each of the pitch, the roll, and the yaw of the aircraft. The use of directly articulated electrical motors as thrust vectoring modules enables the aircraft to execute tight-radius turns over a wide range of airspeeds.
Abstract:
An aircraft for unmanned aviation is described. The aircraft includes an airframe, a pair of fins attached to a rear portion of the airframe, a pair of dihedral braces attached to a bottom portion of the airframe, a first thrust-vectoring (“T/V”) module and a second T/V module, and an electronics module. The electronics module provides commands to the two T/V modules. The two T/V modules are configured to provide lateral and longitudinal control to the aircraft by directly controlling a thrust vector for each of the pitch, the roll, and the yaw of the aircraft. The use of directly articulated electrical motors as T/V modules enables the aircraft to execute tight-radius turns over a wide range of airspeeds.
Abstract:
An unmanned aircraft comprises: a drive system to thrust the unmanned aircraft during a flight; a reverse thrust system to reverse thrust the unmanned aircraft during a landing; a controller operationally coupled to the reverse thrust system; and a detector to detect and notify to the controller that the unmanned aircraft is in an uncontrolled situation during the flight. The controller is then adapted to activate the reverse thrust system in order to reverse thrust the unmanned aircraft in-flight upon notification from the detector that the unmanned aircraft is in an uncontrolled situation.
Abstract:
An aircraft defining an upright orientation and an inverted orientation, a ground station; and a control system for remotely controlling the flight of the aircraft. The ground station has an auto-land function that causes the aircraft to invert, stall, and controllably land in the inverted orientation to protect a payload and a rudder extending down from the aircraft. In the upright orientation, the ground station depicts the view from a first aircraft camera. When switching to the inverted orientation: (1) the ground station depicts the view from a second aircraft camera, (2) the aircraft switches the colors of red and green wing lights, extends the ailerons to act as inverted flaps, and (3) the control system adapts a ground station controller for the inverted orientation. The aircraft landing gear is an expanded polypropylene pad located above the wing when the aircraft is in the upright orientation.
Abstract:
Extended-range monitoring and surveillance of facilities and infrastructure—such as oil, water, and gas pipelines and power lines—employs autonomous vertical take-off and landing (VTOL) capable, small unmanned aerial system (sUAS) aircraft and docking platforms for accommodating the sUAS aircraft. Monitoring and surveillance of facilities using one or more embodiments may be performed continually by the sUAS flying autonomously along a pre-programmed flight path. The sUAS aircraft may have an integrated gas collector and analyzer unit, and capability for downloading collected data and analyzer information from the sUAS aircraft to the docking platforms. The gas collector and analyzer unit may provide remote sensing and in-situ investigation of leaks and other environmental concerns as part of a “standoff” (e.g., remote from operators of the system or the facilities) survey that can keep field operators out of harm's way and monitor health of the environment.
Abstract:
An aircraft for unmanned aviation is described. The aircraft includes an airframe, a pair of fins attached to a rear portion of the airframe, a pair of dihedral braces attached to a bottom portion of the airframe, a first thrust vectoring module and a second thrust vectoring module, and an electronics module. The electronics module provides commands to the two thrust vectoring modules. The two thrust vectoring modules are configured to provide lateral and longitudinal control to the aircraft by directly controlling a thrust vector for each of the pitch, the roll, and the yaw of the aircraft. The use of directly articulated electrical motors as thrust vectoring modules enables the aircraft to execute tight-radius turns over a wide range of airspeeds.
Abstract:
An aircraft for unmanned aviation is described. The aircraft includes an airframe, a pair of fins attached to a rear portion of the airframe, a pair of dihedral braces attached to a bottom portion of the airframe, a first thrust-vectoring (“T/V”) module and a second T/V module, and an electronics module. The electronics module provides commands to the two T/V modules. The two T/V modules are configured to provide lateral and longitudinal control to the aircraft by directly controlling a thrust vector for each of the pitch, the roll, and the yaw of the aircraft. The use of directly articulated electrical motors as T/V modules enables the aircraft to execute tight-radius turns over a wide range of airspeeds.
Abstract:
An aircraft for unmanned aviation is described. The aircraft includes an airframe, a pair of fins attached to a rear portion of the airframe, a pair of dihedral braces attached to a bottom portion of the airframe, a first thrust-vectoring (“T/V”) module and a second T/V module, and an electronics module. The electronics module provides commands to the two T/V modules. The two T/V modules are configured to provide lateral and longitudinal control to the aircraft by directly controlling a thrust vector for each of the pitch, the roll, and the yaw of the aircraft. The use of directly articulated electrical motors as T/V modules enables the aircraft to execute tight-radius turns over a wide range of airspeeds.