Abstract:
In accordance with the present invention, accurate and easily controlled sloped walls may be formed using. AlN and preferably a heated TMAH for such purpose as the fabrication of MEMS devices, wafer level packaging and fabrication of fluidic devices. Various embodiments are disclosed.
Abstract:
A method for fabricating a MEMS device having a fixing part fixed to a substrate, a connecting part, a driving part, a driving electrode, and contact parts, includes patterning the driving electrode on the substrate; forming an insulation layer on the substrate; patterning the insulation layer and etching a fixing region and a contact region of the insulation layer; forming a metal layer over the substrate; planarizing the metal layer until the insulation layer is exposed; forming a sacrificial layer on the substrate; patterning the sacrificial layer to form an opening exposing a portion of the insulation layer and the metal layer in the fixing region; forming a MEMS structure layer on the sacrificial layer to partially fill the opening, thereby forming sidewalls therein; and selectively removing a portion of the sacrificial layer by etching so that a portion of the sacrificial layer remains in the fixing region.
Abstract:
A semiconductor device includes a semiconductor substrate, an actuator provided above the semiconductor substrate to move upwardly, a first electrode layer which is moved by the actuator, and a cap portion provided above the first electrode layer and including a second electrode layer.
Abstract:
A microelectromechanical system switch may include a relatively stiff cantilevered beam coupled, on its free end, to a more compliant or flexible extension. A contact may be positioned at the free end of the cantilevered beam. The extension reduces the actuation voltage that is needed and compensates for the relative stiffness of the cantilevered beam in closing the switch. In opening the switch, the stiffness of the cantilevered beam may advantageously enable quicker operation which may be desirable in higher frequency situations.
Abstract:
A nanomechanical device includes a nanostructure, such as a MWNT, located between two electrodes. The device switches from an OFF state to an ON state by extension of at least one inner shell of the nanostructure relative to at least one outer shell of the nanostructure upon an application of a voltage between the electrodes. If desired, the device may also switch from the ON state to the OFF state upon an application of a gate voltage to a gate electrode located adjacent to the nanostructure.
Abstract:
Methods for Implementation of a Switching Function in a Microscale Device and for Fabrication of a Microscale Switch. According to one embodiment, a method is provided for implementing a switching function in a microscale device. The method can include providing a stationary electrode and a stationary contact formed on a substrate. Further, a movable microcomponent suspended above the substrate can be provided. A voltage can be applied between the between a movable electrode of the microcomponent and the stationary electrode to electrostatically couple the movable electrode with the stationary electrode, whereby the movable component is deflected toward the substrate and a movable contact moves into contact with the stationary contact to permit an electrical signal to pass through the movable and stationary contacts. A current can be applied through the first electrothermal component to produce heating for generating force for moving the microcomponent.
Abstract:
Disclosed are an RF MEMS switch and a fabrication method thereof. The RF MEMS switch is actuated with a low voltage and a low consumption power by using a piezoelectric capacitor actuated by being converted to mechanical energy from electric energy when an electric field is applied to the piezoelectric capacitor. A cap substrate is formed by using an etching method, a chemical mechanical polishing method, an electroplating method, etc., and the RF MEMS switch has a high reliability and a high yield.
Abstract:
The MEMS cantilever actuator is designed to be mounted on a substrate. The actuator comprises an elongated hot arm member having two spaced-apart portions, each provided at one end with a corresponding anchor pad connected to the substrate. The portions are connected together at a common end that is opposite the anchor pads. It further comprises an elongated cold arm member adjacent to and substantially parallel of the hot arm member, the cold arm member having at one end an anchor pad connected to the substrate, and a free end that is opposite the anchor pad thereof. A dielectric tether is attached over the common end of the portions of the hot arm member and the free end of the cold arm member. This MEMS actuator allows improving the performance, reliability and manufacturability of MEMS switches.
Abstract:
A semiconductor device comprises a plurality of integrated circuits and at least one MEMS device interconnecting the integrated circuits for signal transmission between the circuits.
Abstract:
A monolithically integrated, electromechanical microwave switch, capable of handling signals from DC to millimeter-wave frequencies, and an integrated electromechanical tunable capacitor are described. Both electromechanical devices include movable beams actuated either by thermo-mechanical or by electrostatic forces. The devices are fabricated directly on finished silicon-based integrated circuit wafers, such as CMOS, BiCMOS or bipolar wafers. The movable beams are formed by selectively removing the supporting silicon underneath the thin films available in a silicon-based integrated circuit technology, which incorporates at least one polysilicon layer and two metallization layers. A cavity and a thick, low-loss metallization are used to form an electrode above the movable beam. A thick mechanical support layer is formed on regions where the cavity is located, or substrate is bulk-micro-machined, i.e., etched.