Abstract:
A three-dimensional (3D) coordinate measuring system includes an external projector that projects a pattern of light onto an object and an aerial drone attached to a 3D imaging device, the 3D imaging device and the external projector cooperating to obtain 3D coordinates of the object.
Abstract:
An unmanned aerial vehicle with deployable components (UAVDC) is disclosed. The UAVDC may comprise a fuselage, at least one wing, and at least one control surface. In some embodiments, the UAVDC may further comprise a propulsion means and/or a modular payload. The UAVDC may be configured in a plurality of arrangements. For example, in a compact arrangement, the UAVDC may comprise the at least one wing stowed against the fuselage and the at least one control surface stowed against the fuselage. In a deployed arrangement, the UAVDC may comprise the at least one wing deployed from the fuselage and the least one control surface deployed from the fuselage. In an expanded arrangement, the UAVDC may comprise the at least one wing telescoped to increase a wingspan of the deployed arrangement.
Abstract:
An unmanned aerial vehicle (UAV) detecting method is executed and applied in an UAV. The method can include creating a sample features database for a user, and storing the sample features database in a storage device; shooting a plurality of scene images from every direction around the user; capturing a plurality of features of the object from the scene image; comparing the sample features of user with the features of the object, and storing a new feature of the object different from the sample feature of user in the storage device; determining whether a tagger is around the user, and sending an alarm signal to the user.
Abstract:
A system and method for determining the amount of petroleum present in petroleum storage containers, by means of an unmanned aerial vehicle flying in proximity to said containers and collecting data. This data includes position and distance measurements in relation to the unmanned aerial vehicle and storage containers which allow a calculation of the amount of petroleum contained within the containers.
Abstract:
A method and system utilizing one or more agricultural drones in combination with agricultural equipment, e.g., an agricultural boom sprayer, to evaluate the crops being farmed, and to improve the real-time delivery and dispensing of liquid from the sprayer including monitoring and verifying that the liquid is being dispensed correctly and/or in accordance with a desired distribution pattern or level.
Abstract:
[Object] To provide a control device that can make more efficient an inspection performed by a flying body capable of performing imaging.[Solution] Provided is a control device including an acquisition unit configured to acquire information related to an overview of a structure, and a flight information generating unit configured to generate flight information of a flying body being caused to fly over a periphery of the structure to image the structure on the basis of the information acquired by the acquisition unit. The control device generates information used to cause the flying body to image the structure, and thereby makes it possible to make more efficient the inspection performed by the flying body capable of performing imaging.
Abstract:
The invention relates to a camera unit (14) adapted to be placed on board a drone (10) to map a land (16), comprising a camera (18) adapted to capture successive images of portions of the land overflown by the drone. The camera unit comprises means for memorizing the captured images, means for comparing information about the overflown land portion visible through the camera with at least one piece of information about at least the previous captured image to determine the rate of overlapping of the overflown land portion with at least said previous captured image, and means for sending a command to the camera to carry out the capture of an image, as soon as the rate of overlapping of the overflown land portion is lower than or equal to the predetermined rate of overlapping.
Abstract:
Disclosed is a system and method for facilitating testing of a plurality of devices using a drone. At first, a locating module locates position of the drone relative to the plurality of devices. Further, a receiving module receives an image, of a device of the plurality of devices, from image capturing unit of the drone. Then, a comparing module compares the image with a reference image corresponding to the device. Based on the comparison, a determining module determines an action to be performed for testing the device. Further, a facilitating module facilitates the testing by enabling a snout associated with the drone to perform the action on the device.
Abstract:
Described herein are methods, apparatuses, and systems that enable a light weight autonomous unmanned aerial vehicle (UAV) to process hyperspectral (HSI) data during its flight and send information to the ground computer via radio-link. This capability is not currently available owing to the severe combination of technical constraints: the typical processing power required to analyze HSI data in real time; the small space and power available for the payload in a light-weight UAV; and the limited bandwidth available on the wireless link.
Abstract:
An Unmanned Aerial Vehicle (UAV)-based installation method for equipment on cell towers includes flying the UAV with the equipment attached thereto upwards to a desired location on the cell tower, wherein the desired location comprises one or more horizontal support structures; positioning the equipment to the desired location on the cell tower; connecting the equipment to the desired location; and disconnecting the equipment from the UAV.