Abstract:
Provided is a method of manufacturing a patterned substrate. The method may be applied to a process of manufacturing a device such as an electronic device or integrated circuit, or another use, for example, to manufacture an integrated optical system, a guidance and detection pattern of a magnetic domain memory, a flat panel display, a LCD, a thin film magnetic head or an organic light emitting diode, and used to construct a pattern on a surface to be used to manufacture a discrete tract medium such as an integrated circuit, a bit-patterned medium and/or a magnetic storage device such as a hard drive.
Abstract:
A nanostructure array is disclosed. The nanostructure array comprises a plurality of elongated organic nanostructures arranged generally perpendicularly to a plane.
Abstract:
Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.
Abstract:
Disclosed is a method of forming a semiconductor device using a self-assembly (DSA) patterning process. The method includes forming a patterned feature over a substrate; applying an orientation material that includes a first polymer and a second polymer over the substrate, wherein the first polymer has a first activation energy and the second polymer has a second activation energy; baking the substrate at first temperature thereby forming a first orientation layer that includes the first polymer; baking the substrate at second temperature thereby forming a second orientation layer that includes the second polymer; and performing a directed self-assembly (DSA) process over the first and the second orientation layers.
Abstract:
Self-aligned via and plug patterning for back end of line (BEOL) interconnects are described. In an example, a structure for directed self-assembly includes a substrate and a block co-polymer structure disposed above the substrate. The block co-polymer structure has a polystyrene (PS) component and a polymethyl methacrylate (PMMA) component. One of the PS component or the PMMA component is photosensitive.
Abstract:
The present application provides the block copolymers and their application. The block copolymer has an excellent self assembling property and phase separation and various required functions can be freely applied thereto as necessary.
Abstract:
A photoresist pattern used for forming a pattern of a block copolymer is formed on a substrate, and then an acid solution is supplied and an alkaline solution is further supplied to the photoresist pattern so as to slim and smooth the photoresist pattern. A block copolymer solution is applied to the substrate on which the smoothed photoresist pattern has been formed, to form a film of the block copolymer, and the film is heated.
Abstract:
The present invention relates to a diblock copolymer that may facilitate formation of a finer nano pattern, and be used for manufacture of an electronic device including a nano pattern or a bio sensor, and the like, a method for preparing the same, and a method for forming a nano pattern using the same,The diblock copolymer comprises a hard segment including at least one specific acrylamide-based repeat unit, and a soft segment including at least one (meth)acrylate-based repeat unit.
Abstract:
The invention relates to a process for producing a film of self-assembled block copolymers on a substrate, said process consisting in carrying out a simultaneous deposition of block copolymer and of random copolymer by means of a solution containing a blend of block copolymer and of random copolymer of different chemical nature and which are immiscible, then in carrying out an annealing treatment allowing the promotion of the phase segregation inherent in the self-assembly of block copolymers.
Abstract:
The present application provides the block copolymers and their application. The block copolymer has an excellent self assembling property and phase separation and various required functions can be freely applied thereto as necessary.