Abstract:
A substrate device includes: a substrate; a ground layer disposed on one of two opposing surfaces of the substrate; a transmission line disposed on the other of the two opposing surfaces of the substrate; a pad which is disposed on the other of the two opposing surfaces of the substrate and connected to the transmission line; and a connector connected to the pad via a contact point. The pad has a part on the transmission line side and a part positioned on the opposite side of the transmission line with respect to the contact point with the connector which are electrically insulated from each other.
Abstract:
A printed circuit board is provided with at least one via hole, in which a heat dissipating element is arranged, wherein at least one radiant source is arranged on the heat dissipating element. The lighting device is provided with at least one such printed circuit board.
Abstract:
A printed circuit board includes a signal layer, an insulation layer, and a reference layer. A transmission line is located on the signal layer. A probing pad is located on the transmission line. Two aligned slots defined in opposite sides of the reference layer leaving a connecting portion. The slots and the connecting portion are in vertical alignment with the probing pad. The signal layer, the insulation layer, and the reference layer are configured in a cascading order. An arrangement of the signal layer in relation to the reference layer including the slots and the connecting portion reduces a capacitance effect caused by the probing pad.
Abstract:
A flexible printed circuit board includes a differential pair arranged in a signal layer and two sheets defined in a ground layer. The two sheets are apart from each other by a void defined in the ground layer opposite to the differential pair. The differential pair includes a number of section pairs, each of which includes two sections arranged in two transmission lines of the differential pair respectively. The differential pair is equivalent to a low pass filter which includes several capacitors and several inductors. Each of the plurality of section pairs can achieve a desired characteristic impedance by adjusting a distance between each section and a corresponding nearest sheet, and a distance between the two sections of each of the plurality of section pairs.
Abstract:
A mounting structure includes: a first substrate; a second substrate; a first terminal being formed on the first substrate and having a plurality of terminal portions arranged with a gap therebetween; a different terminal being formed on the first substrate and being adjacent to the first terminal; and a second terminal being formed on the second substrate and being electrically connected to at least one of the terminal portions of the first terminal. Here, the first terminal is supplied with a potential higher than that supplied to the different terminal.
Abstract:
There is provided an electronic device having an audio system for reproducing audio signals. An exemplary electronic device has an analog region and a separate and non-overlapping digital region. The electronic device comprises an analog ground plane disposed within the analog region and a digital ground plane disposed within the digital region. Digital circuitry is disposed opposite the digital ground plane, wherein digital signals are routed on or over the digital ground plane. Analog circuitry is disposed opposite the analog ground plane, wherein analog signals are routed on or over the analog ground plane. At least one audio output channel disposed opposite the analog ground plane.
Abstract:
An electromagnetic bandgap structure and a printed circuit board that have a mushroom type structure. The electromagnetic bandgap structure includes a first metal layer; a first dielectric layer, layer-built on the first metal layer; a mushroom type structure having a metal plate layer-built on the first dielectric layer and a via of which one end is connected to the metal plate; a second dielectric layer, layer-built on the metal plate and the first dielectric layer; and a second metal layer, layer-built on the second dielectric layer, wherein the other end of the via is placed in a hole formed on the first metal layer and is connected to the first metal layer through a metal line.
Abstract:
A circuit arrangement has a populated circuit carrier and includes a flat insulation carrier having a top side and a patterned metallization layer on the top side and a first power semiconductor chip arranged on a first section of the metallization layer. The first power semiconductor chip has a first lower chip load terminal electrically conductively connected to the first section. A shunt resistor is arranged on a second section of the metallization layer. The shunt resistor has a lower main terminal electrically conductively connected to the second section. An electrically conductive connection is provided between the first section and the second section. The electrically conductive connection includes a constriction between the first section and the second section so that a current which flows between the first lower chip load terminal and the lower main terminal during operation of the circuit arrangement must pass through the constriction.
Abstract:
A bonding pad structure is disclosed, which is composed of two bonding pad units that are symmetrically disposed with respect to an axial line. Each bonding pad units is further composed of at least two bonding pads, i.e. each bonding pad unit is composed of at least one first bonding pad and at least one second bonding pad. In an embodiment, the first bonding pad is arranged next to the axial line and the second bonding pad is arranged at a side of the corresponding first bonding pad away from the axial line while enabling the first bonding pad and the corresponding second bonding pad to be interconnected to each other by a first neck portion. Thereby, a plurality of solder areas of different sizes can be formed by the interconnecting of the at least two bonding pad units that can be used for soldering electronic components of different sizes.
Abstract:
A multilayer circuit substrate includes a substrate body in turn including a plurality of conductor layers and a plurality of insulating layers that are laminated alternately. The plurality of conductor layers include an uppermost conductor layer that includes a plurality of conductor patterns and a lowermost conductor layer that includes a plurality of conductor patterns. A plurality of semiconductor devices is respectively mounted on the plurality of conductor patterns of the uppermost conductor layer. The plurality of conductor patterns of the lowermost conductor layer includes a plurality of heat releasing patterns. The plurality of heat releasing patterns is respectively provided in one-to-one correspondence with the plurality of semiconductor devices. Each of the heat releasing patterns has an area no less than an area of the corresponding semiconductor device. Each of the heat releasing patterns is connected to the corresponding semiconductor device via a corresponding heat releasing via.