Abstract:
Certain examples described herein are directed to optical devices and systems that include first and second optical elements. In some examples, the first optical element may be configured to pass light received from an excitation source, and the second optical element may be optically coupled to the first optical element and may be configured to reflect incident light from the first optical element back to the first optical element and configured to pass the light reflected from the first optical element. Methods using the devices and systems are also described.
Abstract:
A biosensor detection apparatus having increased processing power for measurement without complicated structure and increased size. The apparatus includes one or more spectrometers configured to spectrally separate each light beam reflected from each of a plurality of measurement regions defined on a biosensor simultaneously, and one or more optical receivers configured to receive each light beam spectrally separated by the one or more spectrometers simultaneously and to obtain a spectral intensity distribution of each light beam separately.
Abstract:
Fast on-line electro-optical detection of wafer defects by illuminating with a short light pulse from a repetitively pulsed laser, a section of the wafer while it is moved across the field of view of an imaging system, and imaging the moving wafer onto a focal plane assembly, optically forming a continuous surface of photo-detectors at the focal plane of the optical imaging system. The continuously moving wafer is illuminated by a laser pulse of duration significantly shorter than the pixel dwell time, such that there is effectively no image smear during the wafer motion. The laser pulse has sufficient energy and brightness to impart the necessary illumination to each sequentially inspected field of view required for creating an image of the inspected wafer die. A novel fiber optical illumination delivery system, which is effective in reducing the effects of source coherence is described. Other novel aspects of the system include a system for compensating for variations in the pulse energy of a Q-switched laser output, methods for autofocussing of the wafer imaging system, and novel methods for removal of repetitive features of the image by means of Fourier plane filtering, to enable easier detection of wafer defects.
Abstract:
A microsphere-based analytic chemistry system and method for making the same is disclosed in which microspheres or particles carrying bioactive agents may be combined randomly or in ordered fashion and dispersed on a substrate to form an array while maintaining the ability to identify the location of bioactive agents and particles within the array using an optically interrogatable, optical signature encoding scheme. A wide variety of modified substrates may be employed which provide either discrete or non-discrete sites for accommodating the microspheres in either random or patterned distributions. The substrates may be constructed from a variety of materials to form either two-dimensional or three-dimensional configurations. In a preferred embodiment, a modified fiber optic bundle or array is employed as a substrate to produce a high density array. The disclosed system and method have utility for detecting target analytes and screening large libraries of bioactive agents.
Abstract:
A microsphere-based analytic chemistry system and method for making the same is disclosed in which microspheres or particles carrying bioactive agents may be combined randomly or in ordered fashion and dispersed on a substrate to form an array while maintaining the ability to identify the location of bioactive agents and particles within the array using an optically interrogatable, optical signature encoding scheme. A wide variety of modified substrates may be employed which provide either discrete or non-discrete sites for accommodating the microspheres in either random or patterned distributions. The substrates may be constructed from a variety of materials to form either two-dimensional or three-dimensional configurations. In a preferred embodiment, a modified fiber optic bundle or array is employed as a substrate to produce a high density array. The disclosed system and method have utility for detecting target analytes and screening large libraries of bioactive agents.
Abstract:
The present invention is directed to solving the problems associated with the detection of surface defects on metal bars as well as the problems associated with applying metal flat inspection systems to metal bars for non-destructive surface defects detection. A specially designed imaging system, which is comprised of a computing unit, line lights and high data rate line scan cameras, is developed for the aforementioned purpose. The target application is the metal bars (1) that have a circumference/cross-section-area ratio equal to or smaller than 4.25 when the cross section area is unity for the given shape, (2) whose cross-sections are round, oval, or in the shape of a polygon, and (3) are manufactured by mechanically cross-section reduction processes. The said metal can be steel, stainless steel, aluminum, copper, bronze, titanium, nickel, and so forth, and/or their alloys. The said metal bars can be at the temperature when they are being manufactured. A removable cassette includes various mirrors. A protection tube isolates the moving metal bar from the line light assembly and image acquisition camera. A contaminant reduction mechanism applies a vacuum to remove airborne contaminants.
Abstract:
A dual illumination system is disclosed for use with an imaging apparatus. The imaging apparatus defines a light-tight imaging compartment with an interior wall having a view port extending into the imaging compartment. This view port enables data acquisition of a biological specimen contained in the imaging compartment. The dual illumination system includes a first illumination assembly configured to direct structured light onto a first side of the specimen to enable structured light and surface topography measurements thereof. A second illumination assembly then directs light at the specimen wherein diffused fluorescent light emanates from a surface thereof for receipt through the view port to acquire fluorescence data of the specimen. The combination of structured light imaging and fluorescence imaging enables 3D diffuse tomographic reconstructions of fluorescent probe location and concentration.
Abstract:
A portable system for detecting agents present in a sample is disclosed. The system comprises a sensing device, having a substrate formed with a plurality of reaction chambers and a plurality of channels interconnecting at least a portion of the plurality of reaction chambers, wherein at least a portion of the plurality of reaction chambers comprises a sensor, capable of generating a detectable signal when exposed to the agents. The system further comprises a detector, which receives signals from the sensing device and provides an image of sensors generating the optical signals. The portable system is connected to a communication network via a communication unit.
Abstract:
A system and method that redistributes light from a light source. The controller can redistribute light to make an irradiance profile of the light source more uniform or make the irradiance profile match a fluid flow profile. The irradiance profile may be controlled by modifying light leakage from a plurality of waveguides or changing the light-directing properties of reflectors and/or lenses.
Abstract:
A sample analyzer comprising: a measuring part for measuring optical information of a sample at first wavelength, second wavelength, and third wavelength, first light of the first wavelength and second light of the second wavelength being absorbed by a second substance but substantially not absorbed by a first substance, and third light of the third wavelength being absorbed by the first substance; and an obtaining means for obtaining content of the first substance in the sample, and content of the second substance in the sample, influence by the second substance being excluded from the content of the first substance, based on the optical information at the first wavelength, second wavelength, and third wavelength measured by the measuring part.