Abstract:
The present invention relates to an X-ray source for the generation of fluorescent X-rays. The X-ray source is realized by an electron source for the emission of electrons and a target which emits X-rays in response to the incidence of the electrons, the target comprising a ring-shaped primary target for the emission of primary X-rays in response to the incidence of the electrons and a secondary target for the emission of fluorescent X-rays in response to the incidence of the primary X-rays. To obtain an enhanced radiance, it is proposed that the primary target comprises a liquid metal channel arranged in a radial direction relative to a central axis, and that a liquid metal circulates in the liquid metal channel during operation of the X-ray source in the radial direction from an inner side to an outer side of the ring-shaped primary target.
Abstract:
The electron beam corresponding to radiation intensity data 112 is output from an electron source 103 by supplying high energy pulse p-1 through p-n corresponding to the radiation intensity data 112 of the radiation field to electron source 103 from power source 108. This electron beam is deflected to be incident in parallel to the medial axis of the X-ray target tube by a deflection means comprising electromagnets, X-ray beam x-1 through x-n which electron beam collides to the inner wall of X-ray target tube 104-1 through 104-n, and have desired intensity is irradiated.
Abstract:
A porous cathode structure is fabricated from a plurality of wires which are placed in proximity to each other in elevated temperature and pressure for a sintering time. The sintering process produces the porous cathode structure which may be divided into a plurality of individual porous cathodes, one of which may be placed into a dispenser cathode support which includes a cavity for containing a work function reduction material such as BaO, CaO, and Al2O3. The work function reduction material migrates through the pores of the porous cathode from a work replenishment surface adjacent to the cavity of the dispenser cathode support to an emitting cathode surface, thereby providing a dispenser cathode which has a uniform work function and therefore a uniform electron emission.
Abstract translation:多孔阴极结构由多个电线制成,多个电线在升高的温度和压力下彼此靠近放置烧结时间。 烧结过程产生多孔阴极结构,其可以分成多个单独的多孔阴极,其中一个可以放置在分配器阴极支撑件中,该阴极支撑件包括用于容纳诸如BaO,CaO和Al 2 O 3的功函数减少材料的空腔 。 工作功能减少材料通过多孔阴极的孔隙从邻近分配器阴极支撑件的空腔的工作补充表面迁移到发射阴极表面,从而提供分配器阴极,其具有均匀的功函数,因此具有均匀的电子发射 。
Abstract:
An x-ray device and method useful in performing close coupled sample analyses. The x-ray device includes an evacuated enclosure having a window and in which is disposed a cathode assembly, control grid, insulator, and anode arranged so that the anode is interposed between the electron source and the window. The anode includes a target surface oriented toward the window and the anode defines a drift tunnel which is substantially aligned with a hollow defined by the insulator. The control grid can be used to influence the energy of the electrons emitted by the filament of the cathode assembly. A high voltage field between the anode and filament causes electrons emitted by the cathode to accelerate rapidly through the insulator. After accelerating to an energy level consistent with the high voltage field, the electrons then pass through the drift tunnel without gaining any additional appreciable energy. The potential difference between the target surface and the window causes the drifting electrons to decelerate, and eventually stop, before they can strike the window. The decelerated electrons then re-accelerate, under the influence of the potential between the window and the anode, toward the target surface, striking the target surface and producing x-rays which are directed through the window so as to impact a sample. One or more detectors proximate to the sample sense the characteristic response emitted by the sample when it is struck by the x-rays produced by the x-ray tube. A computer in communication with the detectors facilitates processing and analysis of the characteristic response sensed by the detectors.
Abstract:
A radiation source which can emit X-ray flux, UV-C flux and other forms of radiation uses electron beam current from a cathode array formed on the window through which the radiation will exit the source. The source can be made in formats which are compact or flat compared with prior art radiation sources. X-ray, UV-C and other radiative flux produced by the source can be used for such purposes as radiation imaging, sterilization, decontamination of biohazards, UV curing or photolithography.
Abstract:
The invention relates to an X-ray tube (11) with a cathode that emits electrons (e−) into an interior chamber (40) that is under vacuum, and with a target (31, 32), configured as an anode, for generating high-dose X-radiation (γ), the cathode comprising at least one cold cathode (21, 22, 23) based on an electron (e−) emitting material having a field-enhancing structure (70). The invention especially relates to an X-ray tube (11) having a cold cathode (21, 22, 23) that comprises at least one support layer (201) for holding the electron (e−) emitting material, the emission area of the cold cathode (21, 22, 23) being defined by the shape of the support layer (201).
Abstract:
Nanofocus x-ray tube, includes a target, and a device for directing an electron beam onto the target. The target includes at least one target element made of a target material for generating x-rays, the at least one target element including a nanostructure having a diameter ≦about 1000 nm. The nanostructure is formed by a microstructuring procedure on a substrate element made of a substrate material, and the target element only partly covers the substrate element. The electron beam cross-section of the x-ray tube, in use, is selected to be sufficiently larger than the cross-section of the target element, such that the electron beam always irradiates the entire surface of the target element. Still further, the substrate material may be diamond, or the substrate material may include diamond, and being doped to raise the electrical conductivity.
Abstract:
A linear source of x-rays is disclosed wherein an elongated filament, mounted within a cylindrically formed anode, provides electrons around the filament, and along the length of said filament. The anode that comprises a high Z material such as gold, receives the electrons and emits X-rays in a 360 degree arc and along a substantial length of the anode. In one embodiment the tube is used for irradiation purposes.
Abstract:
The invention relates to an X-ray tube (11/12) for high dosing performances, a corresponding method for the production of high dosing performances with X-ray tubes (11/12) and method for the production of corresponding X-ray devices (11/12), wherein an anode (31/32) and a cathode (21/22) are arranged opposite each other in a vacuumed internal chamber (41/42). Electrons (e−) are accelerated by means of high voltage which can be applied to the anode (31/32). The anode (31/32) is made of a metal layer having a high ordinal number which is used to convert the electrons (e−) into X-ray radiation (Y) with the aid of a coolant. The cathode (21/22) comprises an essentially transparent carrier material for X-ray radiation (Y) and an essentially transparent electron emitter layer for X-ray radiation (Y). According to the invention, the cathode (31/32) can, in particular, close the vacuumed internal chamber (41/42) from the outside.
Abstract:
A multiple wavelength X-ray source includes an electron-generating cathode and an anode with multiple target regions, each of which emits X-rays at a different characteristic wavelength in response to the electrons. The different X-ray radiation outputs are focused by different focusing sections of a focusing optic. The multiple focusing sections are in different respective locations, and each focuses its respective X-ray radiation onto a sample. The focusing sections may be side-by-side mirrors in a Kirkpatrick-Baez configuration, or in a single-bounce, doubly curved elliptical configuration.