Abstract:
A photosensitive apparatus, such as scanner, includes a plurality of pixels, each pixel having associated therewith a set of photosensors, each photosensor filtered to record a primary color. The photosensors are exposed to light of each primary color separately, thereby deriving test signals. A cross-color correction factor for the pixel is derived from the test signals. The cross-color correction factor is used in processing signals output from the pixel when an image is being recorded, so as to isolate the effects of signal crosstalk between closely-spaced photosensors of different colors.
Abstract:
An LED-based color measurement instrument including an illumination system and a sensing system. The illumination system includes modulated LEDs and a temperature control system for regulating the temperature of the LEDs, thereby improving the consistency of their performance. The sensing system includes a photodiode, a transimpedance amplifier, and an integrator in the first stage to cancel the effect of ambient light on the output of the first stage. The sensing system also includes a lens system for imaging a target area of the target sample onto the photo sensor in a manner so that the product of the target area times the solid angle captured by the lens system is generally uniform over a selected range of distances, thereby reducing the positional sensitivity of the instrument with respect to the target sample.
Abstract:
A method for correcting a color captured by a detector using a light source includes determining target reference color values corresponding to a plurality of groups each of which includes at least three reference colors; determining detected reference color values corresponding to the plurality of groups by capturing the emitted reference colors using the detector; calculating a plurality of sets of correction factors; and correcting the detected color value or the target color value to generate a corrected color value based on one of the sets of the correction factors.
Abstract:
Computed tomography imaging spectrometers (“CTIS”s) having color focal plane array detectors are provided. The color FPA detector may comprise a digital color camera including a digital image sensor, such as a Foveon X3® digital image sensor or a Bayer color filter mosaic. In another embodiment, the CTIS includes a pattern imposed either directly on the object scene being imaged or at the field stop aperture. The use of a color FPA detector and the pattern improves the accuracy of the captured spatial and spectral information.
Abstract:
A colorimeter measured value control system for controlling the measured values of plural colorimeters, including: a plurality of terminal apparatuses, each arranged for each base, having transmission section for transmitting the measured values of a color sample measured by each colorimeter; and a control server having: a storage section for storing measured values of the color sample measured by a standard colorimeter as standard values; a reception section for receiving the measured values; a determining section for determining the correction formula for approximating the measured values to the standard values stored; and a registration section for registering the correction formula, as the correction formula for correcting the error of the measured values of the colorimeter.
Abstract:
The invention provides an image processing apparatus including a region specifying unit for specifying a measurement-object region from an image; a measurement-region defining unit for defining at least one measurement region in the specified measurement-object region; and a characteristic-sample selecting unit for respectively selecting, from a plurality of characteristic samples that are registered in advance, at least one characteristic sample that is close to each measurement region.
Abstract:
To generate a reference database for a particular sensor in a multiple LED spectrophotometric system with a reduced number of test measurements taken from training samples, a first set of reflectance reference measurements are generated from a test target on to a reference sensor from a plurality of different LED emissions. A first spectral reconstruction reference matrix is computed comprising an operational characterization of the reference sensor from the first set of reflectance reference measurements. A second set of reflectance reference measurements from the test target is generated from a second subject sensor whose operation is to be personalized by the objective reference database. The second set of reflectance reference measurements are less in number than the first set. A second reconstruction matrix is computed comprising an operational characterization of the subject sensor from the second set of measurements. The second reconstruction matrix is adjusted by relating the second set of reflectance measurements to a set of corresponding reflectance measurements of the reference sensor, whereby the adjusting of the second matrix comprises computing an optimal solution spectral reconstruction matrix for the second sensor. The reference database is generated from the optimal solution spectral reconstruction matrix.
Abstract:
The present invention provides a simple interactive device intended to be used by the customer for acquiring an image of the customer, interactively allowing the customer to try on virtual shades of lipstick, makeup, color contacts, hair color, and/or apparel at the same time to change their appearance. The present invention takes into account the deviations due to the input devices and the output devices thereby resulting in laboratory quality color accuracy and very realistic images. Since it is so accurate, customers may rely on the present invention instead of “trying on” the products. This allows a customer to view many different colors and color schemes in a fraction of the time, while freeing up store employees. The present invention may also display several images simultaneously to allow a customer to efficiently determine the best color scheme or look requiring minimal employee input.
Abstract:
A method for obtaining a target color measurement using an electronic image capturing device comprising the steps of: (1) determining one or more of a field correction array, level correction vectors, a color correction matrix, and a calibration correction and; (2) adjusting a target color measurement based upon one or more of a field correction array, level correction vector, a color correction matrix, and a calibration correction to obtain a corrected color target measurement.
Abstract:
A hand-held colorimetric device (101) suitable for use by blind or colour-blind individuals to determine the colour of a surface-under-test (SUT), for example of a fabric, has an aperture (110) which, in use, is covered by the SUT (113) whose colour is to be determined. Six LEDs (115A, 115B, 116B, 117A and 117B) arranged in pairs (115A/115B, 116A/116 B, 117a/117B) emitting red/orange, green, and blue light illuminate the SUT and diffuse reflections therefrom containing red/orange, green, and blue spectrum sample values are used to determine the luminous reflectivity and chromaticity values for the colour of the SUT. The measured values are compared with colorimetric values of reference surfaces to determine the colour of the SUT. The colorimetric device may output the name of the colour aurally.