Abstract:
A thermally conductive, corrosion resistant coating composition for use as a substrate coating. The thermally conductive, corrosion resistant coating composition comprising a waterborne polyurethane polymer, and at least one additive. Other thermally conductive, corrosion resistant coating compositions also comprise thermally conductive particles.
Abstract:
The invention relates to a nanocomposite material that contains a polymer binder, a filler and a fraction of nanoparticles, characterized in that the fraction of nanoparticles comprises multi-layered carbon particles having a toroid-like shape with a size of 15 to 150 nm, wherein the ratio between the outer diameter and the thickness of the toroid body is in a range of (10-3):1. This nano-modification makes it possible to obtain an efficient compaction and hardening of the nanocomposite material close to the filler/binder inter-phase barrier, and accordingly to increase the average density, elasticity, hardness and resistance of the material. The invention can be used for making various parts and articles for use in mechanical engineering and transport, including instrument holders for the precise surface treatment of parts.
Abstract:
A coating includes an organosiloxane polymer and a mesoporous silica material bonded with the organosiloxane polymer. A monomer of the organosiloxane polymer is and the surface of the mesoporous silica material includes a hydrophilic group. A method for manufacturing the coating includes the following steps. Provide an organosiloxane polymer polymerized from a plurality of organosiloxanes including a terminal functional group. Provide a mesoporous silica precursor including a surface functional group. The organosiloxane polymer and the mesoporous silica precursor are blended in a solution, so that the surface functional group reacts with the terminal functional group to form a bond, and a mesoporous silica material is formed, as well as the surface of the mesoporous silica material includes a hydrophilic group. A film including a thickness of 0.1-500 μm is formed by the coating.
Abstract:
The method for manufacturing a conductive film includes cleaning a metal nanowire dispersion, which contains metal nanowires with an average short axis length of 150 nm or less as metal particles and a dispersing agent by performing ultrafiltration using an ultrafiltration film, and coating a coating liquid for forming a conductive film, which contains the metal nanowire dispersion after cleaning, onto a support, where the content ({mass of the dispersing agent/(mass of all metal particles+mass of the dispersing agent)}×100) of the dispersing agent in the metal nanowire dispersion after cleaning is 3.2 mass % or more.
Abstract:
Methods using solid-state shear pulverization and melt mixing and related polymer-carbon nanotube composites, as can be used to affect various mechanical and/or physical material properties.
Abstract:
The invention relates to compositions based on polyester, titanium dioxide, and glass fibers, to the use of said compositions for producing short-period-heat-resistant products and also to a process for producing short-period-heat-resistant polyester-based products, in particular polyester-based optoelectronic products.
Abstract:
Nanocomposite adsorbent materials and methods for their preparation and use are described. As an example, a polyaniline-graphite nanoplatelet nanocomposite may be used to adsorb carbon dioxide.
Abstract:
In a method for making an anion electrolyte membrane, an inorganic nano-powder is uniformly dispersed in an organic solvent to form a mixture. A fluorinated poly(aryl ether) ionomer is dissolved in the mixture to form a first solution. An active component is further dissolved in the first solution to form a second solution. A crosslinking catalyst is added to the second solution to form a membrane casting solution. The membrane casting solution is coated on a substrate to form a membrane, and the coated substrate is heated. Then, the membrane is peeled from the substrate.
Abstract:
A method of making a polymer composition comprising dispersed nanoparticles of an oxygen scavenging catalyst includes polymerizing one or more monomers or pre-polymers in the presence of a platinum group metal catalyst or precursor to obtain a polymer composition having dispersed nanoparticles of the platinum group metal. The oxygen scavenging catalyst is added during the polymerization as a solution of the platinum group metal or a compound thereof and a polyhydric alcohol (e.g., glycols). The food or beverage containers made from such polymer compositions exhibit high clarity and high oxygen scavenging properties.
Abstract:
The subject of the invention are new forms of nanoiron or zero-valent iron doped with boron, prepared with the method based on the invention, with the ability to fix oxygen in any environment, even an anhydrous one. In the second aspect, the subject of the invention is the method of oxygen scavenging both in a packaging containing water, as well as in an anhydrous environment. In the third aspect, the subject of the invention are nanocomposites containing nanoiron prepared according to the invention, characterised by the ability to fix oxygen in an environment containing water, as well as in an anhydrous environment. In the fourth aspect, the subject of the invention are iron oxygen scavengers in packaging, based on nanoiron or zero-valent iron doped with boron, prepared with the method based on the invention, with the ability to fix oxygen in an environment containing water, as well as in an anhydrous environment.