Abstract:
An unmanned air vehicle (UAV) having a ducted fan configuration with a propeller mounted inside of an opening that extends longitudinally through a fuselage. A gyroscopic stabilization device is attached to the propeller shaft such that rotation of the propeller shaft also results in rotation of the gyroscopic stabilization device. The gyroscopic stabilization device has sufficient mass and rotates at a sufficient angular velocity such that the aircraft is gyroscopically stabilized during flight. In one embodiment, the gyroscopic stabilization device comprises a ring mounted to the outer tips of the propeller and in another embodiment is comprised of a disc.
Abstract:
A remotely-controlled unmanned mobile device (UMD) adapted to function as a robot scout to enter and reconnoiter the site of a disaster and to communicate to a rescue mission information regarding conditions prevailing at the site, making it possible for the mission to decide on rescue measures appropriate to these conditions. The UMD is operable in either of two modes. In its air-mobility mode the UMD is able to vertically take off and land, to fly to the site and then hover thereover. In its ground-mobility mode, the UMD can walk on legs over difficult terrain and through wrecked structures and ruins. The UMD is provided with condition-sensitive sensors for gathering data regarding conditions prevailing at the site, and position-sensitive sensors for avoiding obstacles in the path of the walking UMD, thereby assuring safe mobility. Other sensors govern geo-referenced navigation and flight control functions.
Abstract:
A device for programming industry standard autopilots by unskilled pilots. The effect of the invention is such that when the invention is employed in a flying body comprising an industry standard autopilot with a digital flight control system, the invention provides for the safe operation of any aircraft by an unskilled pilot. The device additionally affords skilled pilots a more rapid and simplified means of programming autopilots while in flight thus reducing a skilled pilot's cockpit workload for all aircraft flight and directional steering, way points, and aircraft flight functions reducing the possibility of pilot error so as to effect safer flight operations of an aircraft by affording a skilled pilot to direct aircraft steering and function while under continuous autopilot control.
Abstract:
A method for refueling and reloading an unmanned aircraft for continuous flight is disclosed herein wherein the unmanned aircraft is maintained and supported by a support aircraft. Both aircraft maintain cargo bays and in-flight operable doors located on the underside of each aircraft for the purposes of docking and exchanging goods. Preferably the goods comprise loadable cartridges and may contain such items as weapons, cargo, or fuel for example. In one embodiment, when both aircraft are in a docked configuration for exchange of goods during flight, the in-flight operable doors open and the support aircraft is capable of loading such cartridges aboard the unmanned aircraft. When necessary the support aircraft may load gear for the purposes of landing the unmanned aircraft. Alternate methods of reloading an unmanned aircraft for continuous flight is disclosed wherein the unmanned aircraft does not have cargo bay doors and the aircraft is supported by a support aircraft.
Abstract:
Disclosed is an aircraft, configured to have a wide range of flight speeds, consuming low levels of power for an extended period of time, while supporting a communications platform with an unobstructed downward-looking view. The aircraft includes an extendable slat at the leading edge of the wing, and a reflexed trailing edge. The aircraft comprises a flying wing extending laterally between two ends and a center point. The wing is swept and has a relatively constant chord. The aircraft also includes a power module configured to provide power via a fuel cell. The fuel cell stores liquid hydrogen as fuel, but uses gaseous hydrogen in the fuel cell. A fuel tank heater is used to control the boil-rate of the fuel in the fuel tank. The aircraft of the invention includes a support structure including a plurality of supports, where the supports form a tetrahedron that affixes to the wing.
Abstract:
A transformable gun launched aero vehicle having a ballistic projectile configuration and an aeroplane configuration includes a cylinder forming a shell of the vehicle in the ballistic projectile configuration and wings deployable from the cylinder. The wings are capable of achieving sufficient lift for sustained flight in the aeroplane configuration. The cylinder forms a fuselage of the vehicle in the aeroplane configuration. A wing includes plural rib elements, plural inflatable tubes where each tube is braced by the plural rib elements, and a wind shell disposed around the plural inflatable tubes and the plural rib elements. The vehicle includes an inflatable tail section that is inflated while the vehicle is in the aeroplane configuration. The vehicle includes a parachute that is reversibly deployable from a nose portion of the vehicle. The vehicle includes at least one landing rod. Each landing rod is reversibly extendable from the vehicle. A landing controller controls a first landing rod to extend after the vehicle has begun to vertically descend. The vehicle includes a folding propeller deployable from the fuselage in the aeroplane configuration. The vehicle includes a control system, and the control system includes a module to determine when the vehicle has reached a first predetermined state that defines an initiation of a transition from the ballistic projectile configuration to the aeroplane configuration.
Abstract:
A radio controlled aerial disc capable of flight in any direction when airborne. The invention provides upper and lower body portions which form a disc shaped housing when connected. Within the housing there is a servo motor and drive assembly coupled to a quadripartite blade to provide lift and motion to the aerial disc. A servo control mechanism and a rear prop assembly are also components of the invention for controlling the movement of the aerial disc. A receiver mounted on the aerial disc provides a method of receiving signals from a remote transmitter to control the movement of the aerial disc.
Abstract:
Apparatus for transporting a load between source and destination locations, comprising an aircraft having a body, power plant carried by the body to drive the aircraft both generally vertically and also generally horizontally, the aircraft also having a wing structure that has a leading edge remaining presented in the direction of flight; and load pick-up, carry and set-down means connected to the aircraft to elevate the load from the source location, transport the elevated and air-borne load generally horizontally, and set the load down at the destination location, the body and power plant configured for vertical flight mode to elevate and set down the load, and for generally horizontal flight mode to transport the elevated load generally horizontally below the level of the aircraft body.
Abstract:
An unmanned aerial vehicle (UAV) has a toroidal fuselage and a rotor assembly having a pair of counter-rotating rotors secured in fixed coaxial combination with the toroidal fuselage to provide a vertical takeoff and landing (VTOL) capability for the UAV. One embodiment of the VTOL UAV is especially configured for ground surveillance missions by the inclusion of an externally mounted, remotely controllable stowable sensor subsystem that provides an azimuthal scanning capability and a predetermined elevation/depression scanning capability to accomplish the ground surveillance mission and a foldable landing gear subsystem to facilitate landing of the VTOL UAV at unprepared ground surveillance sites.
Abstract:
A rotor blade subassembly for a rotor assembly having ducted, coaxial counter-rotating rotors includes a flexbeam, an integrated torque tube/spar member, and an aerodynamic fairing or rotor blade. The flexbeam is a laminated composite structure that reacts centrifugal loads and a majority of the bending loads of the rotor assembly. The flexbeam has a spanwise predetermined linear twist so that the pretwisted flexbeam is unstrained during specified forward flight conditions. The integrated torque tube/spar member is formed as a continuous, filament wound tubular composite structure having high torsional and bending stiffness that provides a continuous torsional load path and facilitates load coupling between the rotor blade and the pretwisted flexbeam. The spar segment of the functions as the primary structural member of the rotor blade subassembly and, is operative to react all bending, torsional, shear, and centrifugal dynamic loads of the rotor assembly. The torque tube segment reacts all torsional loads and some of the bending loads of the rotor assembly. The rotor blade is fabricated from a high modulus composite material and has a high aerodynamic taper such that the tapered rotor blade has a low outboard mass, a high inboard stiffness, and a high chordwise frequency. The high chordwise frequency allows the rotor assembly to be operated over a weaker modal response zone. The tapered rotor blade includes a triangularly shaped trailing edge segment that is responsive to the aerodynamic pressures encountered during operation of the shrouded counter-rotating rotors.