Abstract:
An electrical connector includes a body and two or more electrical contacts. The body has a guide member elongated between a first end and a second end along a first axis and has a connector block at the first end. The connector has a very low profile (preferably, less than about 10 mm), and the bottom of the body is surface-mountable on a circuit board. The connector block retains the contacts, which are spaced from one another in the direction of the first axis. The upper portions of contacts nearer the first end of the body extend higher above the circuit board on which the connector is mounted than contacts nearer the second end. In other words, the upper portions of the contacts together present a surface that is generally inclined or angled with respect to the bottom surface of the connector and the surface of the circuit board on which it is mountable. When a mating connector having complementary contacts that together present a surface inclined at a complementary angle is, guided by the guide member, moved in the direction of the first axis toward the connector block, the contacts of the electrical connector and mating connector make electrical contact with minimal wiping. The connector block may be wedge-shaped, with its upper surface defining the inclined surface in which the upper portions of the contacts are retained. The vertex of the inclination angle defines a second axis perpendicular to the first axis. The electrical contacts may be arrayed in two or more rows, each parallel to the second axis and having two or more contacts.
Abstract:
A package for containing a high speed electronic assembly has a small physical size, shielding, pluggability, and is capable of operating at multigigabit transmission rates. The package includes a module and a cover which covers at least the top of the module. An optical assembly and a circuit packaging are inserted into the module. The package, with an appropriate cover, can be removed and inserted without disturbing other packages secured on the board. The circuit packaging is electrically connected to the board through bump connectors, while the circuit packaging itself supplies a normal force for insuring the bump connectors are in contact with the board. The package is attached to the board using an attachment member which is separate from the bump connectors. The bump connectors facilitate high speed transmission. Alignment pins may be used to improve mechanical stability, provide feedback indicative of proper insertion, and to prevent bump connectors from contacting the board until the module is properly positioned. Electromagnetic interference shielding may be provided in the cover. The cover and various components of the module serve as heat sinks for the module. The cover, the pattern of the bump connectors and the positioning of the alignment pins may be selected/altered by an end user without affecting the construction of the module.
Abstract:
The invention relates to an optical sub-assembly package for use in receiver optical sub-assemblies or transmitter optical sub-assemblies in which the electrical connections between the transducer chip, e.g. photo-detector or light source, and the device printed circuit board is made by a single flexible circuit conductor extending through the wall of the package. The package is comprised of a housing and a stiffening plate, which encloses and end of the housing and forms a mechanical support for an end of the flexible circuit conductor.
Abstract:
The invention relates to modular heat-dissipating housing covers for opto-electronic modules, e.g. transceivers. The housing covers according to the present invention are constructed out of various different parts, which provide different levels of heat dissipation depending on the desired implementation, while maintaining a seal against EMI leakage. Extra heat sinking portions are provided to dissipate heat generated from specific heat generating sources. The extra heat sinking portions are configured into a shape and/or out of a material that provides more thermal dissipation than the standard cover provided. Independent control over the different heat sinking portions enables a better fit and appropriate dissipation.
Abstract:
An optical signal transceiver subassembly is mounted on a lead frame for further attachment to an electronic printed circuit board. The optical subassembly is comprised of a solid-state laser, a pair of photo-detectors, an over-mold of transparent material having shapes forming the exposed surface thereof, the surface and a selective silvering of a portion thereof defining a beam-splitter mirror and an interior reflective focusing surface, preferably in the shape of a partial cylindrical surface. The beam-splitter mirror is lightly silvered and the cylindrical surface is silvered to enhance the reflection of the laser beam. The optical subassembly is further enclosed with a housing incorporating a pair of lenses and alignment pins. The lenses focus the data stream of optical light signals onto the end of the outgoing optical fiber and the data stream of optical light signals from the incoming optical fiber onto and through the beam-splitter and onto a first photo-detector. The beam-splitter and the partial cylindrical surface reflect the laser beam portion deflected from the primary laser beam path onto a second photo-detector to provide a data stream from which the operation of the laser may be monitored, thereby insuring the proper transmission of the data signals provided to the laser through the lead frame and its associated electronic connections.
Abstract:
An easily removable modular optical signal transceiver unit for conversion between modulated light signal transmission and electronic data signals and which conforms to the Small Form Factor standard for transceiver interfaces is disclosed. The structural details of its chassis include aspects which insure the proper positioning of electronic circuit boards of a transmitter optical subassembly and a receiver optical subassembly as well as the positioning of electromagnetic radiation shielding on the chassis. In conjunction with an interface device on an electronic circuit board of a host device, the chassis supports electromagnetic radiation shielding which substantially encloses the sources of electromagnetic radiation within the module and suppresses the escape of electromagnetic radiation, thereby preventing electromagnetic interference with sensitive components and devices in proximity to the module. During assembly, the chassis side walls are deflected, so that electronic or electro-optic components can pass over latching surfaces into contact with positioning surfaces for retaining the components in their assembled positions.
Abstract:
An electrical connector system has two connectors, one of which is included in a module mateable with the other connector in a pluggable manner. The other connector includes an elongated guide rail and a connector block in which are retained two or more electrical contacts. The guide rail by use of snap projections and recesses (11) may extend through an opening in a computer enclosure. A latch member is attached to the end of the guide rail in a manner that releases the latch member from the guide rail if the latch member is bumped or jarred to minimize the likelihood of damaging it. A grounding strip embedded in the guide rail makes electrical contact with the bezel through which it extends to protect against EMI. The ground strip includes raised contact portions (41) that engage a conductive bottom cover (39) of the module (72) and lower contact portions (53) for surface mount to a system circuit board (26).
Abstract:
A connector system for a removable transceiver module that interfaces with an electronic device, such as a computer, switch, subsystem, peripheral device, disk drive, tape drive and other input/output devices. The electronic device includes an enclosure having a bezel that has an opening for receiving the module. A circuit board is mounted within the enclosure. A guide member is mounted on the circuit board and is elongated between first and second ends along a first axis. A connector block is located at the first end of the guide member, while a door is pivotally mounted at the second end of the guide member. The module is slidably engageable with the guide member in a direction along the first axis. The module also includes electrical contacts electrically connectable with corresponding electrical contacts in the connector block. The door is pivotable between an open position exposing the opening in the bezel and a closed position where a portion of the door outside the enclosure covers the opening. The door effectively minimizes the likelihood of dust entering the electronic device. Preferably, to provide effective EMI shielding, the door and the bezel each comprise an electrically conductive material and are configured to make electrical contact with each other when said door is closed. The door may be positively latched in the closed position and spring biased toward the open position. The door preferably includes features for guiding and latching the module.