Abstract:
An optical transceiver includes structures that define an electrical connector port for allowing connection of an electrical connector to an optical subassembly of the transceiver, and structures that define a vent surrounding at least portions of the connector port, whereby the vent allows bidirectional passage of air therethrough. Included in the transceiver are structures that define electromagnetic interference shielding and selectively transfer heat of heat generating electronic components by conduction to a transceiver housing. Methods of cooling the transceiver by ventilation and internal heat conduction are present.
Abstract:
The present invention relates to an optical sub-assembly, i.e. a receiver optical subassembly or a transmitter optical sub-assembly, for use in an optical transceiver device. The optical sub-assembly according to the present invention includes a hermetic ceramic package with a multi-layer ceramic structure providing a unique RF signal and ground structure providing a controlled signal impedance to achieve high signal transmission quality.
Abstract:
A method of cooling an optical transceiver that is mountable in a wall opening and a method of cooling a data transfer system in combination with an optical transceiver is described. An optical transceiver is provided that has a form factor and one end portion that is insertable within a wall opening in a wall. Ambient air is ventilated over a major surface portion of the optical transceiver by mounting said end portion to the wall opening so that at least one vent is formed within confines of the wall opening. The vent allows air to pass between the exterior and interior of the enclosure, and over the major surface portion of the optical transceiver.
Abstract:
The present invention relates to an optical transceiver unlatching device for disengaging the optical transceiver from a mounting cage found in a host computer device. The unlatching device converts rotational motion from a bail handle into reciprocating motion for a sliding latch member, which disengages spring fingers extending from the mounting cage from abutment surfaces formed in the sides of the optical transceiver. A return spring, extending between the sliding latch member and the optical transceiver housing, is provided to bias the unlatching device into the latched position.
Abstract:
An easily removable modular optical signal transceiver unit for conversion between modulated light signal transmission and electronic data signals and which conforms to the Small Form Factor standard for transceiver interfaces is disclosed. The structural details of its chassis include aspects which insure the proper positioning of electronic circuit boards of a transmitter optical subassembly and a receiver optical subassembly as well as the positioning of electromagnetic radiation shielding on the chassis. In conjunction with an interface device on an electronic circuit board of a host device, the chassis supports electromagnetic radiation shielding which substantially encloses the sources of electromagnetic radiation within the module and suppresses the escape of electromagnetic radiation, thereby preventing electromagnetic interference with sensitive components and devices in proximity to the module.
Abstract:
An electrical connector includes a body and two or more electrical contacts. The body has a guide member that is elongated between a first end and a second end along a first axis and has a connector block at the first end. The connector has a very low profile (preferably, less than about 10 mm high), and the bottom of the body is surface-mountable on a circuit board. The height of the connector can be defined by a vertical axis perpendicular to the first axis. The connector block retains the contacts, which are spaced from one another in the direction of the first axis. The body also has a camming element that, in response to a force of a mating connector being moved along the first axis, brings the contacts of the connector and mating connector together in a generally vertical direction. The camming element may have two oppositely inclined ramp sections. When a mating connector having complementary contacts is, guided by the guide member, moved into engagement with the camming element, the first ramp lifts the mating connector, including its contacts, above the connector block, and the second ramp lowers the mating connector onto the connector block, with the contacts of the mating connector lowering onto and making contact with the contacts of the electrical connector. The camming motion minimizes wiping between the mating contacts and largely confines the relative motion of the contacts to a vertical direction. The contacts may be arrayed in two or more rows.
Abstract:
An optical transceiver includes structures that define an electrical connector port for allowing connection of an electrical connector to an optical subassembly of the transceiver, and structures that define a vent surrounding at least portions of the connector port, whereby the vent allows bidirectional passage of air therethrough. Included in the transceiver are structures that define electromagnetic interference shielding and selectively transfer heat of heat generating electronic components by conduction to a transceiver housing. Methods of cooling the transceiver by ventilation and internal heat conduction are present.
Abstract:
The present invention relates to an electronic module, such as an opto-electronic transceiver or a copper transceiver, for plugging into a host receptacle. In an effort to eliminate the use of costly and inefficient sheet metal spring fingers for reducing EMI emissions, the present invention proposes to use solid conductive projections extending outwardly from the sides and top of the module housing. However, in highly populated host receptacles, adjacent cages often share a common sheet metal wall, which will deform when a module with a solid projection extending therefrom is inserted, thereby making insertion of an adjacent module very difficult. The present invention eliminates this problem by vertically offsetting projections on the opposite sides of the housing so no two projections are in the same horizontal plane.
Abstract:
The invention relates to a receiver optical sub-assembly (ROSA) for use in a high-speed small-form factor transceiver. The ROSA, according to the present invention, includes a stacked chip design in which a semiconductor micro-bench, upon which the photodiode and trans-impedance amplifier are mounted, is disposed perpendicular to the direction that the light travels. A flexible electrical connector is attached to the semiconductor micro-bench for electrically connecting the ROSA to a host a transceiver device. The flexible electrical connector is fixed to the surface of the semiconductor micro-bench with portions cut-out to receive the amplifier and other electrical components extending therefrom. To facilitate assembly, wells are etched from the semiconductor micro-bench corresponding to bumps extending from a mounting flange for the optical coupler.
Abstract:
An electrical connector system has two connectors, one of which is included in a module mateable with the other connector in a pluggable manner. The other connector includes a body and two or more electrical contacts. The body of that electrical connector includes a spring that provides a combined lock-down force and kick-out force. The lock-down force biases the module against the other connector, thereby providing a secure electrical and mechanical connection. The kick-out force biases the module away from the other connector to separate or eject the module when a user actuates a release mechanism. The module also includes a slot that engages a projection on the other connector to promote alignment of the mating electrical contacts.