Abstract:
Provided are a system and method for using a plurality of virtual backup service paths to dynamically switch between storage devices based on a plurality of scenarios. In one example multiple backup service groups are defined. Multiple scenarios that each reference at least one virtual backup service path are also defined. Each virtual backup service path may be defined by at least one network address identifying a storage device. One of the scenarios is selected based on a service level of one or more storage devices, and the virtual backup service path identified by the selected scenario is chosen as a backup destination for at least one of the service groups.
Abstract:
An optoelectronic assembly for an electronic system includes a transparent substrate having a first surface and an opposite second surface, the transparent substrate being thermally conductive and being metallized on the surface. A support electronic chip set is configured for at least one of providing multiplexing, demultiplexing, coding, decoding and optoelectronic transducer driving and receive functions and is bonded to the second surface of the transparent substrate. A first substrate having a first surface and an opposite second surface, is in communication with the transparent substrate via the metallized second surface and support chip set therebetween. A second substrate is in communication with the second surface of the first substrate and is configured for mounting at least one of data processing, data switching and data storage chips. An optoelectronic transducer is in signal communication with the support electronic chip set; and an optical signaling medium defined with one end having an optical fiber array aligned with the optoelectronic transducer is substantially normal to the first surface of the transparent substrate, wherein an electrical signal from the support electronic chip set is communicated to the optoelectronic transducer via the metallized second surface of the transparent substrate, and wherein the support electronic chip set and the optoelectronic transducer share a common thermal path for cooling.
Abstract:
Provided are a system and method for using a plurality of virtual backup service paths to dynamically switch between storage devices based on a plurality of scenarios. In one example multiple backup service groups are defined. Multiple scenarios that each reference at least one virtual backup service path are also defined. Each virtual backup service path may be defined by at least one network address identifying a storage device. One of the scenarios is selected based on a service level of one or more storage devices, and the virtual backup service path identified by the selected scenario is chosen as a backup destination for at least one of the service groups.
Abstract:
A method of making an interposer in which at least two dielectric layers are bonded to each other to sandwich a plurality of conductors there-between. The conductors each electrically couple a respective pair of opposed electrical contacts which are formed within and protrude from openings which are also formed within the dielectric layers as part of this method. The resulting interposer is ideally suited for use as part of a test apparatus to interconnect highly dense patterns of solder ball contacts of a semiconductor chip to lesser dense arrays of contacts on the apparatus's printed circuit board.
Abstract:
An electrical assembly which includes a circuitized substrate comprised of an organic dielectric material having a first electrically conductive pattern thereon. At least part of the dielectric layer and pattern form the first, base portion of an organic memory device, the remaining portion being a second, polymer layer formed over the part of the pattern and a second conductive circuit formed on the polymer layer. A second dielectric layer if formed over the second conductive circuit and first circuit pattern to enclose the organic memory device. The device is electrically coupled to a first electrical component through the second dielectric layer and this first electrical component is electrically coupled to a second electrical component. A method of making the electrical assembly is also provided, as is an information handling system adapted for using one or more such electrical assemblies as part thereof.
Abstract:
A circuitized substrate comprised of at least one dielectric material having an electrically conductive pattern thereon. At least part of the pattern is used as the first layer of an organic memory device which further includes at least a second dielectric layer over the pattern and a second pattern aligned with respect to the lower part for achieving several points of contact to thus form the device. The substrate is preferably combined with other dielectric-circuit layered assemblies to form a multilayered substrate on which can be positioned discrete electronic components (e.g., a logic chip) coupled to the internal memory device to work in combination therewith. An electrical assembly capable of using the substrate is also provided, as is an information handling system adapted for using one or more such electrical assemblies as part thereof.