Abstract:
A bipolar transistor includes a first layer with a collector. A second layer has a base cutout for a base. A third layer includes a lead for the base. The third layer is formed with an emitter cutout for an emitter. An undercut is formed in the second layer adjoining the base cutout. The base is at least partially located in the undercut. In order to obtain a low transition resistance between the lead and the base, an intermediate layer is provided between the first and the second layer. The intermediate layer is selectively etchable with respect to the second layer. At least in the region of the undercut between the lead and the base, a base connection zone is provided that can be adjusted independent of other production conditions. The intermediate layer is removed in a contact region with the base.
Abstract:
It is proposed a method of manufacturing an electronic system wherein a first substrate comprising first connection elements on a first surface of the first substrate is provided; a second substrate comprising second connection elements on a first surface of the second substrate is provided; a polymer layer is applied to at least one of the two first surfaces; the first connection elements are attached to the second connection elements; and the polymer layer is caused to swell during or after the attachment.
Abstract:
A method for housing an electronic component in a device package includes providing a first substrate, wherein the electronic component is arranged in a component area on a first main surface of the first substrate, and wherein first contact pads are arranged outside of the component area, forming an open top frame structure around the component area on the first main surface of the first substrate, providing a second substrate having second contact pads, arranged symmetrically to the first contact pads and electrically and mechanically connecting the first main surface of the first substrate with the first main surface of the second substrate, so that the frame structure and the second substrate from a cavity or recess around the electronic component on the first substrate.
Abstract:
A device with contact elements. One embodiment provides an electrical device including a structure defining a main face. The structure includes an array of cavities and an array of overhang regions, each overhang region defining an opening to one of the cavities. The electrical device further includes an array of contact elements, each contact element only partially filling one of the cavities and protruding from the structure over the main face.
Abstract:
One embodiment of the present invention relates to method for the concurrent deposition of multiple different crystalline structures on a semiconductor body utilizing in-situ differential epitaxy. In one embodiment of the present invention a preparation surface is formed, resulting in two distinct crystalline regions, a monocrystalline silicon substrate region and an isolating layer region. A monocrystalline silicon layer and an amorphous silicon layer are concurrently formed directly onto the preparation surface in the monocrystalline silicon substrate region and the isolating layer region, respectively. Deposition comprises the formation of two or more sub-layers. The process parameters can be varied for each individual sub-layer to optimize deposition characteristics.
Abstract:
An apparatus comprises a device layer structure, a device integrated into the device layer structure, an insulating carrier substrate and an insulating layer being continuously positioned between the device layer structure and the insulating carrier substrate, the insulating layer having a thickness which is less than 1/10 of a thickness of the insulating carrier substrate. An apparatus further comprises a device integrated into a device layer structure disposed on an insulating layer, a housing layer disposed on the device layer structure and housing the device, a contact providing an electrical connection between the device and a surface of the housing layer opposed to the device layer structure and a molding material surrounding the housing layer and the insulating layer, the molding material directly abutting on a surface of the insulating layer being opposed to the device layer structure.
Abstract:
A method for developing a photoresist includes applying a first developer to the photoresist to remove non-cross-linked areas of the photoresist, and applying a second developer to the photoresist to remove remaining non-cross-linked areas of the photoresist, wherein the first developer and the second developer differ in their compositions.
Abstract:
Apparatus for housing a micromechanical structure, and a method for producing the housing. The apparatus has a substrate having a main side on which the micromechanical structure is formed, a photo-resist material structure surrounding the micromechanical structure to form a cavity together with the substrate between the substrate and the photo-resist material structure, wherein the cavity separates the micromechanical structure and the photo-resist material structure and has an opening, and a closure for closing the opening to close the cavity.
Abstract:
In a method for producing a cover for a region of a substrate, first a frame structure is produced in the region of the substrate, and then a cap structure is attached to the frame structure so that the region under the cap structure is covered. Thus, sensitive devices may be protected easily and at low cost from external influences and particularly from a casting material for casting the entire packaged device, which results when a diced chip is cast.
Abstract:
In a method for generating a protective cover for a device, where a substrate is provided, which comprises the device, first, a sacrificial pattern is generated on the substrate. The sacrificial pattern covers at least an area of the substrate, which comprises the device. Then, a polymer layer is deposited, which comprises at least on sacrificial pattern. Then, an opening will be formed in the polymer layer to expose a portion of the sacrificial pattern. Then, the sacrificial pattern will be removed and the formed opening in the polymer layer is closed.