Abstract:
There is provided a pressure sensitive adhesive composition comprising a polyurethane polymer that comprises the reaction product of a polyisocyanate component and a polyol component. The polyol component has a hydrophilic-lipophilic balance (HLB) less than 10. The polyurethane further comprises 0.5 to 10 wt.-% of hydrophilic polymerized units having an HLB greater than 12, such as a reaction product of a polyethylene glycol polymer. In another embodiment, the polyurethane further comprises pendent ethylenically unsaturated groups. Also described are articles such as laminating tapes and protective films as well as methods of bonding substrates with the pressure sensitive adhesive and laminating tape.
Abstract:
Polymeric films, which may be adhesive films, and display devices including such polymeric films, wherein a polymeric film includes: a first polymeric layer having two major surfaces, wherein the first polymeric layer includes a first polymeric matrix and particles. The first polymeric layer includes: a first polymeric matrix having a refractive index n1; and particles having a refractive index n2 uniformly dispersed within the first polymeric matrix; wherein the particles are present in an amount of less than 30 vol-%, based on the volume of the first polymeric layer, and have a particle size range of 400 nanometers (nm) to 3000 nm; and wherein n1 is different than n2.
Abstract:
A process and apparatus for producing a nanovoided article, a nanovoided coating, and a low refractive index coating is described. The process includes providing a first solution of a polymerizable material in a solvent; at least partially polymerizing the polymerizable material to form a composition that includes an insoluble polymer matrix and a second solution, wherein the insoluble polymer matrix includes a plurality of nanovoids that are filled with the second solution; and removing a major portion of the solvent from the second solution. An apparatus for the process is also described, and includes a webline, a coating section, a partial polymerization section, and a solvent removal section.
Abstract:
Light sources are disclosed. A disclosed light source includes an optically reflective cavity that includes an input port for receiving light and an output port for transmitting light, a lamp that is disposed at the input port, and an optical stack that is disposed at the output port. The optical stack includes a forward scattering optical diffuser that is disposed at the output port and has an optical haze that is not less than about 20%, and an optical film that is disposed on the optical diffuser. The optical film enhance total internal reflection at the interface between the optical film and the optical diffuser. The optical film has an index of refraction that is not greater than about 1.3 and an optical haze that is not greater than about 5%. The optical stack also includes a reflective polarizer layer that is disposed on the optical film. Substantial portions of each two neighboring major surfaces in the optical stack are in physical contact with each other.
Abstract:
Presently described are articles, such as optical displays and protective films, comprising a (e.g. light transmissive) substrate having a surface layer comprising the reaction product of a mixture comprising a non-fluorinated binder precursor (e.g. of a hardcoat composition) and at least one polymerizable perfluoropolyether polymer. The resulting cured surface layer can advantageously exhibit low lint attraction in combination with low surface energy. Also described are one-step and two-step methods of synthesizing perfluoropolyether polymers having polymerizable ethylenically unsaturated groups.
Abstract:
Optical constructions use a low index of refraction layer disposed between a low absorption layer and a high absorption layer to increase confinement of light to the low absorption region of the optical constructions. Low index layers can be used in optical constructions that have multi-tiered light confinement. In these constructions, a first tier of reflection is provided when light is reflected at the surface of a low index optical film which is disposed directly or indirectly on a light guide. A second tier of reflection occurs at the surface of a light redirecting film having appropriately oriented refractive structures.
Abstract:
The present invention is a pressure sensitive adhesive including a polyurethane polymer comprising a reaction product of an isocyanate, a (meth) acrylate-containing alcohol having at least one (meth)acrylate group and at least one alcohol group, and a polyol component having a defined solubility parameter of less than about 10; an oligomer comprising a multifunctional (meth)acrylate; and a photoinitiator. A peel adhesion of the pressure sensitive adhesive to glass decreases at least about 20% after being exposed to light radiation.
Abstract:
The present invention is an oil-resistant adhesive composition including a hydroxy alkyl (meth)acrylate having an alkyl group containing 2 to 4 carbons, a short alkyl (meth)acrylate having an alkyl group containing 6 or less carbons, and a photo-initiator. After the adhesive composition is soaked in oleic acid at room temperature for 7 days, the adhesive composition has an expansion percent of less than about 10%.
Abstract:
The present invention is an adhesive delivery system including a conformable film having top and bottom faces, an adhesive releasably coated on at least a portion of the top face of the conformable film, and a light release liner adhered to the adhesive side opposite the conformable film.
Abstract:
Optical constructions are disclosed. A disclosed optical construction includes a reflective polarizer layer, and an optical film that is disposed on the reflective polarizer layer. The optical film has an optical haze that is not less than about 50%. Substantial portions of each two neighboring major surfaces in the optical construction are in physical contact with each other. The optical construction has an axial luminance gain that is not less than about 1.2.