Abstract:
A head-mounted device includes a first device portion and a second device portion. A first coupler portion of the first device portion is connectable to a second coupler portion of the second device portion to define a connected position in which the first device portion is connected to the second device portion and a disconnected position in which the first device portion is disconnected from the second device portion. A second adjuster portion of the second device portion causes a first adjuster portion of the first device portion to move a first optical module and a second optical module in response to movement of the first device portion and the second device portion from the disconnected position to the connected position.
Abstract:
An electronic device may have a housing that separates an exterior region from an interior region. The housing may have a front layer on a front face of the housing and a rear layer on an opposing rear face of the housing. Sidewall structures may extend between the front and rear layers. The housing may form a head-mounted housing that is configured to be worn on a user's head. An internal frame may be mounted in the interior region. The internal frame may have a nose bridge structure that is coupled to the housing with a coupling member such as a coupling member formed from an elastomeric vibration damping material. Other portions of the frame such elongated laterally extending support members may not contact any portion of the housing and may therefore be isolated from the housing during drop events.
Abstract:
A pass-through camera in a head-mounted device may capture image data for displaying on a display in the head-mounted device. However, only low-resolution image data may be needed to display low-resolution images in the periphery of the user's field of view on the display. Therefore, the pass-through camera may only capture high-resolution images that correspond to the portion of the user's field-of-view that is being directly viewed and may capture lower resolution image data that corresponds to the real-world objects in the user's peripheral vision. To enable the camera module to selectively capture high-resolution images, the pass-through camera may include an image sensor with two or more pixel densities, a distortion lens, and/or one or more planar or curved mirrors. Any of the components in the camera module may be adjusted to change which portion of a scene is captured with high-resolution image data.
Abstract:
A housing for an electronic device is disclosed. The housing includes a first conductive component defining a first interface surface, a second conductive component defining a second interface surface facing the first interface surface, and a joint structure between the first and second interface surfaces. The joint structure includes a molded element forming a portion of an exterior surface of the housing, and a sealing member forming a watertight seal between the first and second conductive components. Methods of forming the electronic device housing are also disclosed.
Abstract:
An electronic device such as a wristwatch may have a housing with metal portions such as metal sidewalls. The housing may form an antenna ground for an antenna. An antenna resonating element for the antenna may be formed from a stack of capacitively coupled component layers such as a display layer, touch sensor layer, and near-field communications antenna layer at a front face of the device. An additional antenna may be formed from a peripheral resonating element that runs along a peripheral edge of the device and the antenna ground. A rear face antenna may be formed using a wireless power receiving coil as a radio-frequency antenna resonating element or may be formed from metal antenna traces on a plastic support for light-based components.
Abstract:
Methods and devices related to fabrication and utilization of multilayer capacitors presenting coaxially arranged electrode layers. The capacitors may be self-shielded against electromagnetic interference with neighboring components. The capacitors may have reduced losses from fringing effects when compared to conventional capacitors. The coaxial capacitors may be two-terminal multilayer ceramic capacitors (MLCC). The design of the capacitors may facilitate an improved relationship between the electric and magnetic fields generated by the capacitor within the dielectric in some embodiments. In some embodiments, the placement of the terminals may lead to a cancelation of mutual inductances between the electrodes. Terminations that facilitate the coupling of the capacitor to a circuit board, as well as methods for fabrication of the capacitors are also discussed.
Abstract:
An electronic device such as a wristwatch may have a housing with metal portions such as metal sidewalls. The housing may form an antenna ground for an antenna. An antenna resonating element for the antenna may be formed from a stack of capacitively coupled component layers such as a display layer, touch sensor layer, and near-field communications antenna layer at a front face of the device. An additional antenna may be formed from a peripheral resonating element that runs along a peripheral edge of the device and the antenna ground. A rear face antenna may be formed using a wireless power receiving coil as a radio-frequency antenna resonating element or may be formed from metal antenna traces on a plastic support for light-based components.
Abstract:
An electronic device may include surface mount technology components mounted to a printed circuit board. The surface mount technology components may include electrical components such as resistors, inductors, and capacitors. In order to reduce the size of the electronic device, surface mount technology components may be stacked. A surface mount technology component may be mounted to metal members that electrically connect the surface mount technology component to contact pads on a printed circuit board. A surface mount technology component may be provided with integral standoff portions, and a second surface mount technology component may be mounted to the integral standoff portions. A single surface mount technology component may be used to implement different circuits depending on which face of the surface mount technology component is mounted to the printed circuit board.
Abstract:
Methods and devices related to fabrication and utilization of multilayer capacitors presenting coaxially arranged electrode layers. The capacitors may be self-shielded against electromagnetic interference with neighboring components. The capacitors may have reduced losses from fringing effects when compared to conventional capacitors. The coaxial capacitors may be two-terminal multilayer ceramic capacitors (MLCC). The design of the capacitors may facilitate an improved relationship between the electric and magnetic fields generated by the capacitor within the dielectric in some embodiments. In some embodiments, the placement of the terminals may lead to a cancelation of mutual inductances between the electrodes. Terminations that facilitate the coupling of the capacitor to a circuit board, as well as methods for fabrication of the capacitors are also discussed.
Abstract:
An electronic device has structures that are assembled using attachment structures. The attachment structures change shape to help join the electronic device structures together. Structures that may be joined together can include electronic device housing structures, display structures, internal device components, electrical components, and other portions of an electronic device. The attachment structures can include heat-activated attachment structures, structures that are activated using other types of applied energy, and structures that change shape due the application of chemicals or other treatments.