DOPING SEMICONDUCTOR FILMS
    21.
    发明申请

    公开(公告)号:US20220093390A1

    公开(公告)日:2022-03-24

    申请号:US17025009

    申请日:2020-09-18

    Abstract: Exemplary deposition methods may include delivering a silicon-containing precursor and a boron-containing precursor to a processing region of a semiconductor processing chamber. The methods may include delivering a dopant-containing precursor with the silicon-containing precursor and the boron-containing precursor. The dopant-containing precursor may include one or more of carbon, nitrogen, oxygen, or sulfur. The methods may include forming a plasma of all precursors within the processing region of the semiconductor processing chamber. The methods may include depositing a silicon-and-boron material on a substrate disposed within the processing region of the semiconductor processing chamber. The silicon-and-boron material may include greater than or about 1 at. % of a dopant from the dopant-containing precursor.

    Boron concentration tunability in boron-silicon films

    公开(公告)号:US11961739B2

    公开(公告)日:2024-04-16

    申请号:US17063339

    申请日:2020-10-05

    CPC classification number: H01L21/0337 C23C16/38 H01L21/0332

    Abstract: Embodiments of the present technology include semiconductor processing methods to make boron-and-silicon-containing layers that have a changing atomic ratio of boron-to-silicon. The methods may include flowing a silicon-containing precursor into a substrate processing region of a semiconductor processing chamber, and also flowing a boron-containing precursor and molecular hydrogen (H2) into the substrate processing region of the semiconductor processing chamber. The boron-containing precursor and the H2 may be flowed at a boron-to-hydrogen flow rate ratio. The flow rate of the boron-containing precursor and the H2 may be increased while the boron-to-hydrogen flow rate ratio remains constant during the flow rate increase. The boron-and-silicon-containing layer may be deposited on a substrate, and may be characterized by a continuously increasing ratio of boron-to-silicon from a first surface in contact with the substrate to a second surface of the boron-and-silicon-containing layer furthest from the substrate.

    Methods to reduce material surface roughness

    公开(公告)号:US11618949B2

    公开(公告)日:2023-04-04

    申请号:US17087346

    申请日:2020-11-02

    Abstract: Exemplary deposition methods may include delivering a silicon-containing precursor and a boron-containing precursor to a processing region of a semiconductor processing chamber. The methods may include providing a hydrogen-containing precursor with the silicon-containing precursor and the boron-containing precursor. A flow rate ratio of the hydrogen-containing precursor to either of the silicon-containing precursor or the boron-containing precursor is greater than or about 2:1. The methods may include forming a plasma of all precursors within the processing region of a semiconductor processing chamber. The methods may include depositing a silicon-and-boron material on a substrate disposed within the processing region of the semiconductor processing chamber.

    Film formation via pulsed RF plasma

    公开(公告)号:US11443919B2

    公开(公告)日:2022-09-13

    申请号:US16785331

    申请日:2020-02-07

    Abstract: Systems and methods of using pulsed RF plasma to form amorphous and microcrystalline films are discussed herein. Methods of forming films can include (a) forming a plasma in a process chamber from a film precursor and (b) pulsing an RF power source to cause a duty cycle on time (TON) of a duty cycle of a pulse generated by the RF power source to be less than about 20% of a total cycle time (TTOT) of the duty cycle to form the film. The methods can further include (c) depositing a first film interlayer on a substrate in the process chamber; (d) subsequent to (c), purging the process chamber; and (e) subsequent to (d), introducing a hydrogen plasma to the process chamber. Further in the method, (b)-(e) are repeated to form a film. The film can have an in-film hydrogen content of less than about 10%.

    Hardmasks and processes for forming hardmasks by plasma-enhanced chemical vapor deposition

    公开(公告)号:US11421324B2

    公开(公告)日:2022-08-23

    申请号:US17075812

    申请日:2020-10-21

    Abstract: Embodiments of the present disclosure generally relate to hardmasks and to processes for forming hardmasks by plasma-enhanced chemical vapor deposition (PECVD). In an embodiment, a process for forming a hardmask layer on a substrate is provided. The process includes introducing a substrate to a processing volume of a PECVD chamber, the substrate on a substrate support, the substrate support comprising an electrostatic chuck, and flowing a process gas into the processing volume within the PECVD chamber, the process gas comprising a carbon-containing gas. The process further includes forming, under plasma conditions, an energized process gas from the process gas in the processing volume, electrostatically chucking the substrate to the substrate support, depositing a first carbon-containing layer on the substrate while electrostatically chucking the substrate, and forming the hardmask layer by depositing a second carbon-containing layer on the substrate.

    Polysilicon liners
    29.
    发明授权

    公开(公告)号:US11170990B2

    公开(公告)日:2021-11-09

    申请号:US16795191

    申请日:2020-02-19

    Abstract: Aspects of the disclosure provide a method including depositing an underlayer comprising silicon oxide over a substrate, depositing a polysilicon liner on the underlayer, and depositing an amorphous silicon layer on the polysilicon liner. Aspects of the disclosure provide a device intermediate including a substrate, an underlayer comprising silicon oxide formed over the substrate, a polysilicon liner disposed on the underlayer, and an amorphous silicon layer disposed on the polysilicon liner.

Patent Agency Ranking