Abstract:
Techniques for sending and receiving acknowledgement (ACK) information in a wireless communication system are described. A base station sends control information and data to a user equipment (UE) and receives ACK information from the UE. The base station performs detection for the ACK information based on (i) a first hypothesis for the control information being missed by the UE and (ii) a second hypothesis for the control information being received correctly by the UE. In one design, the ACK information may have a variable size, and the base station may perform detection for the ACK information based on different block codes for the first and second hypotheses. In another design, the ACK information may have a fixed size, and the base station may perform detection for the ACK information based on a single block code and obtain a fixed number of bits for the ACK information for both hypotheses.
Abstract:
Techniques for multiplexing pilots in a wireless transmission are described. In one aspect, a transmitter station generates multiple pilot sequences for multiple transmit antennas, with each pilot sequence comprising pilot symbols sent in the time domain on a different set of subcarriers. The transmitter station further generates multiple pilot transmissions for the transmit antennas based on the pilot sequences. In another aspect, a transmitter station generates multiple pilot sequences for multiple transmit antennas based on frequency-domain code division multiplexing (FD-CDM) of a Chu sequence defined by a transmitter-specific value. The transmitter station further generates multiple pilot transmissions for the transmit antennas based on the pilot sequences. In yet another aspect, a transmitter station generates multiple pilot transmissions for multiple transmit antennas based on a first multiplexing scheme and generates multiple data transmissions based on a second multiplexing scheme that is different from the first multiplexing scheme.
Abstract:
Specifically, according to one embodiment of the present invention, a method for searching for an access point is provided. The method for searching may comprises the steps of: a terminal measuring the position thereof; checking an access point located near the measured position of the terminal; determining whether or not the distance between the terminal and the access point is greater than the radius range searchable by the terminal; and searching for the access point when the distance between the terminal and the access point is less than the radius range.
Abstract:
Techniques for efficiently deriving uplink channel estimates without consuming much additional uplink resources are described. A user equipment (UE) may send a request for uplink resources on a request channel (REQCH) whenever the UE desires to transmit data on the uplink. The UE may send the REQCH on a set of subcarriers and from multiple antennas, e.g., send REQCH data on data subcarriers and pilot on pilot subcarriers. A node B may receive the request, estimate the complex channel gains for the pilot subcarriers based on received pilot symbols, and coherently demodulate received data symbols based on the channel gain estimates. The Node B may estimate the complex channel gains for the data subcarriers based on demodulated data symbols and derive a channel estimate for each UE antenna based on the channel gain estimates for the pilot and data subcarriers. The Node B may use the channel estimates for MIMO scheduling, subband scheduling, and rate selection.
Abstract:
Systems and methodologies are described that facilitate creating a unified format that can accommodate various MIMO modes. The unified format can employed with a single payload size that includes uplink control information for each available MIMO mode. By packaging the payload with uplink control information related to each MIMO mode, the uplink control information can be utilized with any suitable or available MIMO mode.
Abstract:
A wireless communications method is provided. The method includes employing a processor executing computer executable instructions stored on a computer readable storage medium to implement various acts. The method also includes generating cyclic shifts for a sequence generator by masking shift register output values with one or more vectors. The method includes forwarding the sequence generator to a future state based in part on the output values and the vectors.
Abstract:
Techniques for performing spectral shaping to achieve a desired peak-to-average ratio (PAR) are described. Spectral shaping may be selectively performed for a single-carrier frequency division multiplexing (SC-FDM) signal based on one or more criteria, e.g., in transmit power limited conditions and/or if a modulation scheme with lower PAR is unavailable. At least one parameter of a window function or spectral shaping filter may also be adjusted based on at least one characteristic of the SC-FDM signal. For example, the roll-off of the spectral shaping filter may be adjusted based on the modulation scheme and/or the number of subcarriers used for the SC-FDM signal. A transmitter may perform spectral shaping on modulation symbols, if enabled, to obtain spectrally shaped symbols. Spectral shaping may be performed in the frequency domain either within an allocated bandwidth or with bandwidth expansion. The SC-FDM signal may be generated based on the spectrally shaped symbols.
Abstract:
Disclosed are a method and apparatus capable of enhancing a closed loop multi-input multi-output (MIMO) capacity through distributed discrete power control in the case of cooperatively transmitting information to multiple users through a downlink.
Abstract:
The present invention relates to a data transmission/receiving method and apparatus for overcoming interference between multiple data streams, by relaying only part of multiple data streams that are received from a source node during collaborative data transmission employing relay nodes. The multiple data stream transmission method of the present invention comprises: receiving a plurality of data streams from a source node; decoding the plurality of data streams received; selecting a portion of the successful decoded data streams; encoding the selected portion of the data streams; and sending the encoded data stream portion to a destination node.
Abstract:
Disclosed are a packet scheduling method and apparatus in a relay network. A scheduling method of a relay station in a relay communication system includes: receiving information regarding an amount of generated data to be transmitted to a user from a base station; estimating the size of a queue of the base station storing the data to be transmitted to the user based on the amount of generated data received from the base station; obtaining the size of a virtual queue in which overall data to be transmitted to a user with reference to the estimated size of the queue of the base station and the size of a queue of the relay station storing data to be transmitted to a user; performing scheduling to allocate resource based on the size of the virtual queue; and transmitting data to the user based on the scheduling results.