Abstract:
The present disclosure describes methods and apparatus to produce a streaming image of a sample during a time period when an attribute of the sample is changing. The streaming image can be viewed in such a manner so as to be able to follow a visible change in an attribute of the sample. The sample may be undergoing nucleation, aggregation, or chemical interaction. The present disclosure also describes methods and apparatus to determine a change in an attribute of a sample by detecting, analyzing, and comparing spectra of the sample taken at different times during the time period when the attribute of the sample is changing. The sample may be undergoing nucleation, aggregation, or chemical interaction.
Abstract:
The invention relates to methods of assessing the polymorphic form of a substance by assessing Raman-shifted radiation scattered by a particle of the substance. The method is useful, for example, for assessing particle sizes and size distributions in mixtures containing both particles of the substance and other materials. The invention also relates to methods of selecting and controlling polymorph formation by illuminating a material with non-resonant (i.e., non-absorbed) laser radiation as it is thermally driven through a phase transition temperature.
Abstract:
A system and method for detecting dynamic changes that occur in a sample between a first time interval and a second time interval using a series of at least first and second sequential chemical images of the sample. During the first time interval: (i) the sample is illuminated with a plurality of photons to thereby produce photons scattered or emitted by the sample; (ii) a two-dimensional array of detection elements is used to simultaneously detect scattered or emitted photons in a first predetermined wavelength band from different locations on or within the sample; and (iii) the two-dimensional array of detection elements is thereafter used one or more further times to simultaneously detect scattered or emitted photons in one or more further predetermined wavelength band(s) from different locations on or within the sample. The outputs of the two-dimensional array of detection elements during the first time interval are then combined to generate the first chemical image of the sample. The process is repeated during the second time interval to generate the second chemical image of the sample. Dynamic changes occurring in the sample between the first time interval and the second time interval are detected based on one or more differences between the first and second chemical images.
Abstract:
System and method for determining the presence of a contaminant in a sample using Raman spectroscopic data. The sample may be food or feed and the contaminant may be melamine. The sample is illuminated with substantially monochromatic light to produce Raman scattered photons. The Raman scattered photons are collected to generate Raman spectroscopic data. The Raman spectroscopic data may comprise at least one of a Raman spectrum and a spatially accurate wavelength resolved Raman image. The Raman spectroscopic data is analyzed to determine the presence or absence of a contaminant in a sample. The concentration of the contaminant in the sample can also be determined by using a ratio algorithm.
Abstract:
A method and apparatus of obtaining a spectral image of a plurality of predetermined chemical species. A sample is illuminated to produce photons. These photons are collected to produce a plurality of images for each predetermined chemical species, wherein each image comprises a frame consisting of a plurality of pixels. A wavelength range is identified wherein a chemical species exhibits a unique absorption of radiation. Pixels are identified that do not comprise the chemical species. The steps may be repeated for a plurality of chemical species. If more than one chemical species is present, the contribution of each in a pixel is separated and separate spectral images of each species is composed.
Abstract:
The present disclosure describes methods and apparatus to produce a streaming image of a sample during a time period when an attribute of the sample is changing. The streaming image can be viewed in such a manner so as to be able to follow a visible change in an attribute of the sample. The sample may be undergoing nucleation, aggregation, or chemical interaction. The present disclosure also describes methods and apparatus to determine a change in an attribute of a sample by detecting, analyzing, and comparing spectra of the sample taken at different times during the time period when the attribute of the sample is changing. The sample may be undergoing nucleation, aggregation, or chemical interaction.
Abstract:
The disclosure relates to systems and method for chemical imaging of microarrays. In one embodiment, the disclosure relates to a system for simultaneous spectral imaging of a plurality of samples arranged on an array. The system includes an illumination source for providing illuminating photons to said plurality of samples, the illuminating photons interacting with each of the plurality of samples to emit interacted photons; an array for receiving said plurality of samples, the array having an external dimension such that the samples are within a simultaneous field of view of the optical device; an optical device for collecting the interacted photons and directing the photons to an imaging device, the imaging device simultaneously forming a plurality of images corresponding to each of the plurality of samples.
Abstract:
In one embodiment, the disclosure relates to a method for determining illumination parameters for a stained sample, the method may include providing a stained sample and obtaining an absorption band of the sample; obtaining an emission band of the sample and determining the illumination parameters for the sample as a function of the absorption band and the emission band of the sample.
Abstract:
A pulse photobleaching methodology wherein a monochromatic illumination (e.g., laser illumination) having a higher power intensity (photobleaching power) just below the photodamage threshold of a luminescent sample is initially used to significantly attenuate sample luminescence without photothermally destroying the sample material. Thereafter, the laser power density may be reduced to a significantly lower level (analytical power level) to carry out spectroscopic measurements (e.g., collection of Raman scattered photons) on the sample. In one embodiment, the laser illumination wavelength remains the same despite changes in laser power intensity. Some figures-of-merit may be computed from optical measurements made at the analytical power level to guide the photobleaching process. Sample-dependent combinations of laser power density and short exposure times may be obtained to significantly expedite photobleaching to assist in collection of sample spectral data in the field without a long wait. Portable spectroscopy systems employing pulse photobleaching may be devised for expeditious collection of spectral data from luminescent samples in the field.
Abstract:
In one embodiment, the disclosure relates to a method for determining illumination parameters for a stained sample, the method may include providing a stained sample and obtaining an absorption band of the sample; obtaining an emission band of the sample and determining the illumination parameters for the sample as a function of the absorption band and the emission band of the sample.