Abstract:
An oblique incidence broadband spectroscopic polarimeter which is easy to adjust the focus, achromatic, maintains the polarization and has simple structure is provided. It comprise at least one polarizer (P, A), at least one curved reflector element (OAP1, OAP2, OAP3, OAP4) and at least two flat reflector elements (M1, M2). By utilizing the flat reflector element, the oblique incidence broadband spectroscopic polarimeter can change the propagate direction of beam, and compensate the polarization changes caused by the reflective focusing unit, make the polarization of beam passed the polarizer unchanged when obliquely incident and focus on the sample surface. The oblique incidence broadband spectroscopic polarimeter can accurately measure the optical constants of sample material, film thickness, and/or the critical dimension (CD) properties or three-dimensional profile for analyze the periodic structure of the sample. An optical measurement system including the oblique incidence broadband spectroscopic polarimeter is also provided.
Abstract:
The refractive index, extinction coefficient, size and density of fluid suspended particles are simultaneously determined by combined transmittance and scattering measurements. The scattering measurements are preferably angle selective to obtain additional information about the scattered light. A charge-coupled device is employed for its high sensitivity to low light intensity in measurement of scattered light in combination with a photodiode array employed for its high signal to noise ratio, which is beneficial in transmittance measurement. The scattered light may be measured in an angle selective fashion by use of a motorized aperture that is concentrically positioned with respect to the impinging beam axis and moveable along the impinging beam axis. An ellipsoidal mirror collects the scattered light that passes through the motorized aperture and focuses the scattered light towards the charge-coupled device.
Abstract:
A method and apparatus for convolving spectroscopic data with certain phase information for practicing phase-compensated sensitivity-enhanced spectroscopy (PCSES). PCSES uses a beam of radiation in a polarization state PSp from a source emitting at a plurality of wavelengths, and places in the beam a compensator capable of altering polarization state PSp by applying a delimited phase shift Δ between two orthogonal polarization axes of the radiation to restrict a finely-vibrating spectrum. A sample disposed in the beam after the compensator generates a response beam by reflection, transmission or even both. A polarization state PSa of the response beam is passed to a detector to determine a spectrum of the response beam. A first spectrum is collected when polarization states PSp, PSa and the compensator are in a first polarization-altering configuration and a second spectrum is collected when polarization states PSp, PSa and the compensator are in a second polarization-altering configuration. A phase-compensated spectrum is then derived from just the first and second spectra thereby allowing the user to undertake optical characterization, including the measurement of film thickness t and complex indices of refraction n, k of the sample with as few as just two polarization-altering configurations.
Abstract:
Methods and apparatus for optical characterization based on symmetry-reduced 2-D RCWA calculations are provided. The invention is applicable to gratings having a grating reflection symmetry plane. A sample can be illuminated at normal incidence or at a non-zero angle of incidence such that the plane of incidence is parallel to or identical with the symmetry plane. The diffracted field components are either symmetric or anti-symmetric with respect to the grating symmetry plane. This symmetry is exploited to provide a symmetry-reduced 2-D RCWA having reduced matrix dimension (by about a factor of two) that is mathematically equivalent to a conventional 2-D RCWA. For normal incidence on a grating having two reflection symmetry planes, a symmetry-reduced 2-D RCWA having reduced matrix dimension (by about a factor of four) is provided. This normal incidence RCWA can be used to approximately characterize a sample illuminated at non-normal incidence. Approximation accuracy can be improved by modifying either the grating depth or the grating refractive index.
Abstract:
An alignment target includes periodic patterns on two elements. The alignment target includes two locations, at least one of which has a designed in offset. In one embodiment, both measurement locations have a designed in offset of the same magnitude but opposite directions. For example, two separate overlay patterns that are mirror images of each other may be used. Alternatively, the magnitudes and/or directions may vary between the measurement locations. The radiation that interacts with the measurement locations is compared. The calculated difference is extremely sensitive to any alignment error. If the difference between the patterns is approximately zero, the elements are properly aligned. When an alignment error is introduced, however, calculated difference can be used to determine the error. In one embodiment, the alignment target is modeled to determine the alignment error. In another embodiment, additional overlay patterns with additional reference offsets are used to determine the alignment error.
Abstract:
A method and apparatus for optically determining a physical parameter of an underlayer such as the underlayer refractive index N.sub.u, extinction coefficient k.sub.u and/or thickness t.sub.u through a top layer having a first top layer thickness t.sub.1 and an assigned refractive index index n.sub.t and coefficient of extinction k.sub.t. The values of index n.sub.t and extinction coefficient k.sub.t can be estimated, optically determined or assigned based on prior knowledge. In a subsequent step a first reflectance R.sub.1 is measured over a wavelength range .DELTA..lambda. by using a test beam spanning that wavelength range. Then, a second reflectance R.sub.2 of the top layer and underlayer is measured using the test beam spanning wavelength range .DELTA..lambda. at a second top layer thickness t.sub.2. In a calculation step the physical parameter of the underlayer is determined from the first reflectance measurement R.sub.1, the second reflectance measurement R.sub.2, and the assigned or predetermined thickness values t.sub.1, t.sub.2, and the refractive index n.sub.t. and coefficient of extinction k.sub.t of the top layer. A dispersion model can be used in this calculation step. Alternatively, with transmissive samples, a first and second transmittance T.sub.1, T.sub.2 can be used.