Abstract:
In a carbon nanotube (CNT) structure and a method of manufacturing the CNT structure, and in a field emission display (FED) device using the CNT structure and a method of manufacturing the FED device, the CNT structure includes a substrate, a plurality of buffer particles having a predetermined size coated on the substrate, a plurality of catalyst layers formed on surfaces of the buffer particles by annealing a catalyst material deposited on the substrate to a predetermined thickness so as to cover the buffer particles, and a plurality of CNTs grown from the catalyst layers.
Abstract:
A method of vertically aligning carbon nanotubes, whereby carbon nanotubes are grown on a substrate on which a catalyst metallic layer is formed, the grown carbon nanotubes are separated from the substrate in a bundle shape, the separated carbon nanotube bundles is put in an electrolyte having a charger, the carbon nanotube bundles are mixed with the charger to charge the carbon nanotube bundles, and the charged carbon nanotube bundles are vertically attached onto a surface of an electrode, using electrophoresis.
Abstract:
A display device includes: a first substrate and a second substrate, a plurality of first electrodes, a light emitting layer, and a plurality of second electrodes. The first and second substrates are spaced apart to face each other, and the plurality of first electrodes are formed on an inner surface of the first substrate. The light emitting layer is arranged on the plurality of first electrodes and includes phosphor bodies and light emitting sources mixed therein. The plurality of second electrodes are arranged on an inner surface of the second substrate.
Abstract:
A field emission device and a field emission display (FED) using the same and a method of making the field emission device. The FED includes a glass substrate, a layer of a material formed on the glass substrate and having a concave portion, a cathode electrode formed on the material layer and also having a concave portion, electron emitters formed on the concave portion of the cathode electrode, a gate insulating layer formed on the cathode electrode and having a cavity communicating with the concave portion, and a gate electrode formed on the gate insulating layer and having a gate aperture aligned with the cavity.
Abstract:
A field emission device and a field emission display (FED) using the same and a method of making the field emission device. The FED includes a glass substrate, a layer of a material formed on the glass substrate and having a concave portion, a cathode electrode formed on the material layer and also having a concave portion, electron emitters formed on the concave portion of the cathode electrode, a gate insulating layer formed on the cathode electrode and having a cavity communicating with the concave portion, and a gate electrode formed on the gate insulating layer and having a gate aperture aligned with the cavity.
Abstract:
A method of manufacturing a Field Emission Display (FED) having a double gate structure using a half tone photomask includes sequentially forming a cathode material layer, a resistance material layer, and a photoresist on a substrate, arranging a half tone photomask on the photoresist, the half tone photomask having a first pattern that shields light and a second pattern that partially transmits light formed in respective predetermined shapes, exposing the photoresist to light to develop it, forming a resistance layer and a cathode electrode by sequentially etching the resistance material layer and the cathode material layer exposed through the developed photoresist, etching the developed photoresist until the resistance layer located on an upper part of a pad region of the cathode electrode is exposed, exposing the pad region of the cathode electrode by etching the resistance layer exposed through the etched photoresist, and removing the photoresist.
Abstract:
A field emission backlight unit for a liquid crystal display (LCD) includes: a lower substrate; first electrodes and second electrodes alternately formed in parallel lines on the lower substrate; emitters disposed on at least the first electrodes; an upper substrate spaced apart from the lower substrate by a predetermined distance such that the upper and lower substrates face each other; a third electrode formed on a bottom surface of the upper substrate; and a fluorescent layer formed on the third electrode. Since the backlight unit has a triode-type field emission structure, field emission is very stable. Since the first electrodes and the second electrodes are formed in the same plane, brightness uniformity is improved and manufacturing processes are simplified. If the emitters are disposed on both the first electrodes and the second electrodes, and a cathode voltage and a gate voltage are alternately applied to the first electrodes and second electrodes, the lifespan and brightness of the emitters can be improved. The above advantages are also achieved as a result of the method of driving the backlight unit and the method of manufacturing the lower panel thereof.
Abstract:
A method for manufacturing a display device using light emitting diode chips contemplates manufacturing a plurality of light emitting diode (LED) chips using a porous template; forming a plurality of first electrodes on a substrate; attaching the LED chips to pixel sites on the first electrodes using fluidic self assembly (FSA); and forming a plurality of second electrodes on a top surface of the LED chips.
Abstract:
A novel field emission display (FED) and a novel method for making the same. The FED includes a substrate, a cathode electrode and a focus electrode formed on the same level with each other on the substrate, an insulation layer formed on the cathode electrode and the focus electrode such that the cathode electrode and the focus electrode are partially exposed through the insulation layer, a field emitter formed at the cathode electrode exposed by the insulation layer, and a gate electrode formed on the insulation layer. The field emitter being formed on the same layer and of the same material and at the same time as the cathode electrode.
Abstract:
A method of forming a floating structure lifting up from a substrate and a method of manufacturing a field emission device (FED) employing the floating structure are provided. The method of forming a floating structure includes forming an expansion causer layer, which can generate a byproduct from the reacting with a predetermined reactant gas causing volume expansion, on the substrate; forming an object material layer for the floating structure on a resultant stack; forming a hole through which the reactant gas is supplied on a resultant stack; supplying the reactant gas through the hole so that the object material layer partially lifts up from the substrate due to the byproduct generated from the reaction of the expansion causer layer with the reactant gas; and removing the byproduct through the hole so that the portion of the object material layer lifting up from the substrate can be completely separated from the substrate to form the floating structure.