Abstract:
A method for manufacturing a multi-junction photoelectric conversion device includes forming a first electrode on a first photoelectric conversion unit including a first semiconductor layer as a photoelectric conversion layer, the first electrode including a plurality of patterned regions separated from one another by separation grooves; and eliminating a leakage existing in the first semiconductor layer by applying a reverse bias voltage between one of the patterned regions of the first electrode and a second photoelectric conversion unit comprising a second semiconductor layer as a photoelectric conversion layer. The application of the reverse bias voltage is performed while irradiating the second photoelectric conversion unit with light, generating a photocurrent in the second photoelectric conversion unit that is larger than a photocurrent in the first photoelectric conversion unit.
Abstract:
A substrate with a transparent electrode which includes an amorphous transparent electrode layer on a transparent film substrate. When a bias voltage of 0.1 V is applied to the amorphous transparent electrode layer, the layer has continuous regions where a current value at a voltage-applied surface is 50 nA or more. Each of the continuous regions has an area of 100 nm2 or more and the number of the continuous regions is 50/μm2 or more. In one embodiment, the layer has a tin oxide content of 6.5% or more and 8% or less by mass. In another embodiment, the layer has a tin oxide content of 6.5% or more and 8% or less by mass. With respect to the substrate with a transparent electrode according to the present invention, the transparent electrode layer may be crystallized in a short period of time.
Abstract:
The present invention provides a substrate with conductive layers, capable of improving both glare preventing properties and etching characteristics; a method for fabricating the same; and a substrate with touch-panel transparent electrodes. A substrate with conductive layers has, on at least one side of a transparent film substrate, a thin film underlayer, a metal oxide layer, and a first metal layer formed in this order. The thin film underlayer comprises nickel and copper or nickel oxide and copper oxide, the metal oxide layer comprises nickel oxide and copper oxide, and the first metal layer comprises of at least one of gold, silver, and copper. The substrate preferably satisfies, the following relational expressions: [1] the thickness of the thin film underlayer is 20 nm or less; [2] the thickness of the metal oxide layer is 80 nm or less; and [3] the thickness of the thin film underlayer is equal to or less than the thickness of the metal oxide layer.
Abstract:
Disclosed is a solar cell having a collecting electrode on one main surface of a photoelectric conversion section. The collecting electrode includes a first electroconductive layer and a second electroconductive layer in this order from the photoelectric conversion section side, and further includes an insulating layer between the first electroconductive layer and the second electroconductive layer. The first electroconductive layer includes a low-melting-point material, and a part of the second electroconductive layer is conductively connected with the first electroconductive layer through, for example, an opening in the insulating layer. The second electrode layer is preferably formed by a plating method. In addition, it is preferable that before forming the second electroconductive layer, annealing by heating is carried out to generate the opening section in the insulating layer.
Abstract:
Provided is a substrate with transparent electrode, which is capable of achieving both acceleration of crystallization during a heat treatment and suppression of crystallization under a normal temperature environment. In the substrate with transparent electrode, a transparent electrode thin-film formed of a transparent conductive oxide is formed on a film substrate. An underlayer that contains a metal oxide as a main component is formed between the film substrate and the transparent electrode thin-film. The underlayer and the transparent electrode thin-film are in contact with each other. The transparent electrode thin-film is amorphous, and the base layer is dielectric and crystalline.
Abstract:
A photovoltaic device according to the present disclosure is provided with: a condensing optical system having chromatic aberration; a first photoelectric converter, which is arranged on an optical axis of the condensing optical system; and a second photoelectric converter, which is arranged on an outer peripheral side of the first photoelectric converter when viewed from an optical axis direction of the condensing optical system, and which has a bandgap lower than a bandgap of the first photoelectric converter, wherein the first photoelectric converter is arranged on an inner side of a rectangle that circumscribes a condensing region of absorbable longest-wavelength light determined based on the bandgap.
Abstract:
In the solar cell module, a first solar cell and a second solar cell are stacked together with an electroconductive member interposed therebetween, such that a cleaved surface-side periphery on a light-receiving surface of the first solar cell overlaps a periphery on a back surface of the second solar cell. The first solar cell and the second solar cell each have: photoelectric conversion section including a crystalline silicon substrate; collecting electrode; and back electrode. At a section where the first solar cell and the second solar cell are stacked, the collecting electrode of the first solar cell and the back electrode of the second solar cell are electrically connected to each other by coming into contact with the electroconductive member. An insulating member is provided on a part of the cleaved surface-side periphery on the light-receiving surface of the first solar cell, where the collecting electrode is not provided.
Abstract:
A method for manufacturing a multi-junction photoelectric conversion device includes forming a first electrode on a first photoelectric conversion unit including a first semiconductor layer as a photoelectric conversion layer, the first electrode including a plurality of patterned regions separated from one another by separation grooves; and eliminating a leakage existing in the first semiconductor layer by applying a reverse bias voltage between one of the patterned regions of the first electrode and a second photoelectric conversion unit comprising a second semiconductor layer as a photoelectric conversion layer. The application of the reverse bias voltage is performed while irradiating the second photoelectric conversion unit with light, generating a photocurrent in the second photoelectric conversion unit that is larger than a photocurrent in the first photoelectric conversion unit.
Abstract:
Provided is a substrate with transparent electrode, which is capable of achieving both acceleration of crystallization during a heat treatment and suppression of crystallization under a normal temperature environment. In the substrate with transparent electrode, a transparent electrode thin-film formed of a transparent conductive oxide is formed on a film substrate. An underlayer that contains a metal oxide as a main component is formed between the film substrate and the transparent electrode thin-film. The underlayer and the transparent electrode thin-film are in contact with each other. The transparent electrode thin-film is amorphous, and the base layer is dielectric and crystalline.
Abstract:
A substrate with a transparent electrode which includes an amorphous transparent electrode layer on a transparent film substrate. When a bias voltage of 0.1 V is applied to the amorphous transparent electrode layer, the layer has continuous regions where a current value at a voltage-applied surface is 50 nA or more. Each of the continuous regions has an area of 100 nm2 or more and the number of the continuous regions is 50/μm2 or more. In one embodiment, the layer has a tin oxide content of 6.5% or more and 8% or less by mass. In another embodiment, the layer has a tin oxide content of 6.5% or more and 8% or less by mass. With respect to the substrate with a transparent electrode according to the present invention, the transparent electrode layer may be crystallized in a short period of time.