Abstract:
A composite electronic component includes a capacitor and a resistor stacked in a height direction. The capacitor includes a capacitor body, and first and second external electrodes. The resistor includes a base portion, a resistor, first and second upper surface conductors, first and second lower surface conductors, first connecting conductors, and second connecting conductors. An upper surface of the base portion of the resistor faces a lower surface of the capacitor body of the capacitor, and the first upper surface conductor and the first external electrode are electrically connected, and the second upper surface conductor and the second external electrode are electrically connected.
Abstract:
A composite electronic component includes a capacitor device and a resistor device stacked together in a height direction. The capacitor device includes a capacitor body and first and second external electrodes. The resistor device includes a base, a resistive element, first and second upper surface conductors, first and second lower surface conductors, a first connection conductor, and a second connection conductor. The upper surface of the base of the resistor device faces the lower surface of the capacitor body of the capacitor device, the first upper surface conductor is electrically connected to the first external electrode, and the second upper surface conductor is electrically connected to the second external electrode.
Abstract:
A composite electronic component includes a capacitor device and a resistor device stacked together in a height direction. The capacitor device includes a capacitor body and first and second external electrodes. The resistor device includes a base, a resistive element, first and second upper surface conductors, first and second lower surface conductors, a first connection conductor, and a second connection conductor. The upper surface of the base of the resistor device faces the lower surface of the capacitor body of the capacitor device, the first upper surface conductor is electrically connected to the first external electrode, and the second upper surface conductor is electrically connected to the second external electrode.
Abstract:
A circuit module includes a first and second monolithic ceramic capacitors encapsulated by a mold resin layer on a wiring board. The first and second monolithic ceramic capacitors are lined up along a direction parallel or substantially parallel to the main surface of the wiring board and are electrically connected in series or in parallel through a conductive pattern provided on the wiring board. One of a pair of end surfaces of the first monolithic ceramic capacitor is opposed to one of the width-direction side surfaces as a pair of side surfaces of the second monolithic ceramic capacitor with the mold resin layer interposed.
Abstract:
A multilayer ceramic capacitor includes flat-shaped inner electrodes that are laminated. An interposer includes an insulating substrate that is larger than contours of the multilayer ceramic capacitor. A first mounting electrode that mounts the multilayer ceramic capacitor is located on a first principal surface of the insulating substrate, and a first external connection electrode for connection to an external circuit board located on a second principal surface. The multilayer ceramic capacitor is mounted onto the interposer in such a way that the principal surfaces of the inner electrodes are parallel or substantially parallel to the principal surface of the interposer, that is, the first and second principal surfaces of the insulating substrate.
Abstract:
An electronic component includes an interposer, and a multilayer ceramic capacitor. The interposer includes a substrate including front and back surfaces that are parallel or substantially parallel to each other. Two first mounting electrodes and two second mounting electrodes are located on the front surface of the substrate, on opposite end portions in the longitudinal direction. Recesses are located in the longitudinal side surface of the insulating substrate. Connecting conductors are each provided in the side wall surface of each of the recesses. The connecting conductors connect a first external connection electrode and a second external connection electrode that are located on the back surface of the substrate, and first mounting electrodes and second mounting electrodes.
Abstract:
A mounting land structure and a mounting structure include land patterns to be bonded to outer electrodes of a laminated ceramic capacitor. Each of the land patterns includes a first conductor pattern and a second conductor pattern separated from each other in a width direction and a third conductor pattern connecting the first conductor pattern and the second conductor pattern. The first conductor pattern and the second conductor pattern include respective portions to be bonded to first ridgeline portions of the laminated ceramic capacitor provided with the outer electrodes. The third conductor pattern is arranged at a position overlapping the corresponding outer electrode as viewed in a height direction, when the laminated ceramic capacitor is mounted.
Abstract:
In an electronic component, a first outer electrode is provided on a first side surface and a second outer electrode is provided on a second side surface. Each of the first and second outer electrodes includes first and second electrode portions that are arranged at positions other than end portions and a center of the first or second side surface in a first direction.
Abstract:
An electronic component includes a body and first and second external electrodes arranged on an external surface of the body. An edge portion of the first external electrode and an edge portion of the second external electrode face each other on the body. The first and second external electrodes each include a copper-metal-containing layer and a protective copper oxide layer covering the copper-metal-containing layer within the edge portion of the first and second external electrodes, respectively.
Abstract:
In a power supply apparatus that supplies direct current power to a load with a power supply unit, since a load power supply current is detected by a current detector from a voltage between both ends of a through electrode of a three-terminal capacitor provided on a power feed line extending from a power supply unit to a load, the three-terminal capacitor serving as a filter to reduce ripple noise can be used also as a detection resistor for detecting the load power supply current. Accordingly, it is possible to detect the load power supply current with a simple configuration that does not require a resistance element to detect the load power supply current, unlike in the related art. Consequently, it is not necessary to ensure an area where the resistance element for current detection can be mounted to reduce a power supply apparatus in size.