Abstract:
Embodiments of the invention are directed to semiconductor die packages. One embodiment of the invention is directed to a semiconductor die package including, (a) a semiconductor die including a first surface and a second surface, (b) a source lead structure including protruding region having a major surface, the source lead structure being coupled to the first surface, (c) a gate lead structure being coupled to the first surface, and (d) a molding material around the source lead structure and the semiconductor die, where the molding material exposes the second surface of the semiconductor die and the major surface of the source lead structure.
Abstract:
A multichip module package uses bond wire with plastic resin on one side of a lead frame to package an integrated circuit and flip chip techniques to attach one or more mosfets to the other side of the lead frame. The assembled multichip module 30 has an integrated circuit controller 14 on a central die pad. Wire bonds 16 extend from contact areas on the integrated circuit to outer leads 2.6 of the lead frame 10. On the opposite, lower side of the central die pad, the sources and gates of the mosfets 24, 26 are bump or stud attached to the half etched regions of the lead frame. The drains 36 of the mosfets and the ball contacts 22.1 on the outer leads are soldered to a printed circuit board.
Abstract:
A semiconductor die package is disclosed. In one embodiment, the die package includes a semiconductor die including a first surface and a second surface, and a leadframe structure having a die attach region and a plurality of leads extending away from the die attach region. The die attach region includes one or more apertures. A molding material is around at least portions of the die attach region of the leadframe structure and the semiconductor die. The molding material is also within the one or more apertures.
Abstract:
A method for processing a semiconductor substrate is disclosed. The method includes providing a mask having an aperture on a semiconductor substrate having a conductive region. An aperture in the mask is disposed over the conductive region. A pre-formed conductive column is placed in the aperture and is bonded to the conductive region.
Abstract:
A multichip module package uses bond wire with plastic resin on one side of a lead frame to package an integrated circuit and flip chip techniques to attach one or more mosfets to the other side of the lead frame. The assembled multichip module 30 has an integrated circuit controller 14 on a central die pad. Wire bonds 16 extend from contact areas on the integrated circuit to outer leads 2.6 of the lead frame 10. On the opposite, lower side of the central die pad, the sources and gates of the mosfets 24, 26 are bump or stud attached to the half etched regions of the lead frame. The drains 36 of the mosfets and the ball contacts 22.1 on the outer leads are soldered to a printed circuit board.
Abstract:
A shielding assembly is configured to provide electromagnetic shielding and environmental protection to one or more electronic components coupled to a substrate. The shielding assembly includes a non-conductive mold compound layer, such as a dielectric epoxy. The mold compound layer is applied to a top surface of the substrate, thereby covering the electronic components and providing protection against environmentally induced conditions such as corrosion, humidity, and mechanical stress. The shielding assembly also includes a conductive layer applied to a top surface of the mold compound layer. The conductive layer is coupled to a ground plane in the substrate, thereby enabling the electromagnetic shielding function. The conductive layer is coupled to the ground plane via one or more metallized contacts that are coupled to the substrate and extend through the mold compound layer.
Abstract:
A semiconductor die package capable of being mounted to a motherboard is disclosed. The semiconductor die package includes a substrate, and a first semiconductor die mounted on the substrate, where the first semiconductor die includes a first vertical device comprising a first input region and a first output region at opposite surfaces of the first semiconductor die. The semiconductor die package includes a second semiconductor die mounted on the substrate, where second semiconductor die comprises a second vertical device comprising a second input region and a second output region at opposite surfaces of the second semiconductor die. A substantially planar conductive node clip electrically communicates the first output region in the first semiconductor die and the second input region in the second semiconductor die. The first semiconductor die and the second semiconductor die are between the substrate and the conductive node clip.
Abstract:
An optocoupler package is disclosed. The optocoupler package includes a substrate comprising a leadframe and a molding compound, and a plurality of optocouplers, each optocoupler including (i) an optical emitter, (ii) an optical receiver, (iii) and an optically transmissive medium disposed between the optical emitter and optical receiver, where the optical emitter and the optical receiver are electrically coupled to the leadframe.
Abstract:
A chip device that includes a leadframe that has a die attach cavity. The memory device further includes a die that is placed within the die attach cavity. The die attach cavity is substantially the same thickness as the die. The die is positioned within the cavity and is attached therein with a standard die attachment procedure.
Abstract:
A chip device including two stacked dies. The chip device includes a leadframe that includes a plurality of leads. A first die is coupled to a first side of the leadframe with solder and a second die is coupled to a second side of the leadframe with solder. A molded body surrounds at least a portion of the leadframe and the dies.