Abstract:
A preferred embodiment of an electrical connector includes a housing having a body. The body defines a contact-receiving aperture extending therethrough, and a heat-transfer aperture extending therethrough in substantially the same direction as the contact-receiving aperture for facilitating circulation of air through the body.
Abstract:
An electrical connector having a leadframe housing, a first electrical contact fixed in the leadframe housing, a second electrical contact fixed adjacent to the first electrical contact in the leadframe housing, and a third electrical contact fixed adjacent to the second electrical contact in the leadframe housing is disclosed. Each of the first and second electrical contacts may be selectively designated, while fixed in the lead frame housing, as either a ground contact or a signal contact such that, in a first designation, the first and second contacts form a differential signal pair, and, in a second designation, the second contact is a single-ended signal conductor. The third electrical contact may be a ground contact having a terminal end that extends beyond terminal ends of the first and second contacts.
Abstract:
An electrical connector is disclosed with a connector housing and a leadframe assembly received in the connector housing. The leadframe assembly may include a dielectric leadframe housing and first and second electrically-conductive contacts extending through the leadframe housing. Each of the contacts may define a respective broadside and a respective mating end. The leadframe housing may define a hinge between the mating ends of the first and second contacts. The leadframe housing may be folded along the hinge such that the broadside of the first contact is positioned along the broadside of the second contact. A method for manufacturing such an electrical connector may include stamping a leadframe from a sheet of electrically-conductive material, overmolding a hinged, leadframe housing onto the leadframe, folding the leadframe along the hinge such that a face of a first contact is positioned along a face of a second contact, and inserting the folded leadframe assembly into a connector housing such that the leadframe assembly is retained in the connector housing in a folded configuration.
Abstract:
An electrical connector comprises two signal contacts, each having an L-shaped body portion, a first contact arm connected to a first end of the L-shaped body portion, and a second contact arm also connected to the first end of the L-shaped body portion. For each signal contact, the first contact arm and the second contact arm define a plug contact receiving space therebetween, and the L-shaped body extends from a first end to a second end opposite the first end. The signal contacts are positioned so that an edge of each of the L-shaped bodies is proximate and opposite the edge of the other signal contact, thereby electrically edge coupling the contacts. The edges of the L-shaped bodies may extend along the entire length of the bodies and along the contact arms, thereby providing electrical edge coupling throughout the length of the contact.
Abstract:
A preferred embodiment of a connector system includes a first electrical connector for mounting on a first substrate. The first electrical connector has a housing, and a contact mounted on the housing. The connector system also includes a second electrical connector for mounting on a second substrate. The second electrical connector includes a housing having a projection formed thereon, and a contact mounted on the housing. The second electrical connector is capable of mating with the first electrical connector so that the contact of the first electrical connector electrically contacts the contact of the second electrical connector and the projection contacts the first substrate so that at least a portion of the weight of the second electrical connector and the second substrate is transmitted to the first substrate by way of the projection.
Abstract:
A high-density orthogonal connector is disclosed and may include electrical contacts that are configured to receive contacts from an orthogonal header connector while minimizing signal skew and signal reflection. The electrical contacts in the connector may define contact pairs (e.g., differential signal pairs). Each contact pair may include a lead portion and a mating interface that extends from the lead portion. The lead portions of the contact pair may define a first plane. One contact of the contact pair defines a first mating interface defining a second plane and the other contact in the contact pair defines a second mating interface defining a third plane. The second plane and the third plane may be both substantially parallel to and offset from the first plane in opposite directions. The contact pair may be configured such that the overall length of each contact within the pair may be substantially the same.
Abstract:
An connector assembly comprises a first connector comprising a first plurality of compliant electrical contacts arranged in first a linear array, a first insertion side, and a first opposed end. The illustrative connector assembly also comprises a second connector comprising a second plurality of compliant electrical contacts arranged in a second linear array, a second insertion side, and a second opposed end. The second plurality of compliant electrical contacts face and are parallel to the first plurality of compliant electrical contacts. The second plurality of compliant electrical contacts are spaced apart from the first linear array of electrical contacts and form a recess there between having an insertion end and termination end.
Abstract:
An orthogonal backplane connector systems having midplane footprints that provide for continuity of impedance and signal integrity through the midplane and allow for the same connector to be coupled to either side of the midplane. This design creates an orthogonal interconnect without taking up unnecessary PCB real estate. The midplane circuit board may include a first differential signal pair of electrically conductive vias disposed in a first direction, and a second differential signal pair of electrically conductive vias disposed in a second direction that is generally orthogonal to the first direction. The first and second differential signal pair of electrically conductive vias are electrically connected through the midplane circuit board. Each pair may be associated with and be located in between ground vias. A ground via that is large relative to the signal vias may be provided. The second signal vias may comprise a shared signal via, receiving a contact from respective connectors connected to each side of the midplane circuit board. The second signal vias may comprise partial signal vias, extending from one or more sides partially into the midplane circuit board. The signal pairs may be offset from a via array centerline formed by the ground vias to correspond with mating ends of signal contacts of an electrical connector that likewise jog away from a centerline of a respective contact column of the connector.
Abstract:
An electrical connector having a leadframe assembly and a connector housing is disclosed. The leadframe may include a lead frame and an electrical contact extending at least partially through the lead frame. The connector housing contains the leadframe assembly in each of one or more directions and also allows the leadframe assembly to move relative to the housing in the each direction. After the connector is mounted to a substrate, such as a printed circuit board, the housing is free to move in at least one direction relative to the leadframe assemblies. The connector may also include a contact receiving wafer having a face that at least partially defines an aperture that extends therethrough. A terminal portion of the contact may extend at least partially into the aperture. The faces that define the aperture contain the terminal portion of the contact in each of a plurality of directions and also allows the terminal portion of the contact to move in each direction.
Abstract:
An electrical connector according to the invention may include a first signal contact that defines a first side and a first edge, wherein the first side is greater in length than the first edge, the first edge having a first edge width, and a second signal contact that defines a second side and a second edge, wherein the second side is greater in length that the second edge, the second edge having a second edge width. The first signal contact and the second signal contact may be positioned edge-to-edge. A gap may be defined between the first edge of the first signal contact and the second edge of the second signal contact. The gap may have a gap width that is approximately equal to at least one of the first edge width and the second edge width. The connector may have a column pitch, and the gap width may be based on the column pitch. The gap width may be approximately 0.3-0.4 millimeters.