Abstract:
A multilayer wiring board is composed of a core portion, a first wiring portion and a second wiring portion. The core portion includes a core insulating layer containing a carbon fiber material. The first wiring portion is bonded to the core portion and has a laminated structure including at least a first insulating layer and a first wiring pattern, the first insulating layer containing glass cloth. The second wiring portion is bonded to the first wiring portion and has a laminated structure including at least a second insulating layer and a second wiring pattern. The core portion, the first wiring portion and the second wiring portion are arranged in a stack.
Abstract:
A substrate bonding method for mutually bonding substrates, has a first radiation step for irradiating the surfaces of the individual substrates with an oxygen particle beam, a second radiation step for irradiating the surfaces of the individual substrate with a nitrogen particle beam simultaneously with or subsequently to the first radiation step, and a step for stacking the individual substrates and bringing the surfaces thereof into close contact. Particularly, the substrates which have been irradiated first with an oxygen plasma and subsequently with a nitrogen plasma are stacked and bonded.
Abstract:
Magnetic field producers are disposed either at the leading portion of an underground excavator or at a reference position in front of the underground excavator. The magnetic field producers can be constituted by a plurality of rectangular loops disposed to run parallel to one another and to overlap one another. The rectangular loops can be individually excited sequentially or they can be simultaneously excited at different frequencies. The magnetic field produced by a magnetic field producer can be detected by a first magnetic field detector and by a second magnetic field detector disposed to the rear of the first magnetic field detector so that the inclination angle of the underground excavator can be obtained from the difference between the positions of the two detectors. A loop of a magnetic field producing cable can be covered by a non-magnetic metal member so that wear and disconnection are prevented. A double loop structure can be employed so that measurement can be performed even if one of the loops is disconnected.
Abstract:
A method and an apparatus for performing measurement by a resistivity method in order to detect the thickness of a sludge layer on the outer periphery of a shield machine. A Wenner electrode row (14) on the outer periphery of the machine is used to measure reference resistivities to thereby detect certain resistivities in the depth direction of the natural ground and the sludge layer thickness. At the same time, a dipole electrode row (16) is used to measure voltage distributions in the depth direction of the natural ground and in the direction of the arrangement of the electrodes. The ratios of the values measured by the measurement dipole electrodes to those measured by the reference Wenner electrodes are calculated, and their distribution is charted. When mutually equal values in the distribution map are connected together by continuous curves, a contour-pattern image is obtained, which enables a configuration of the collapse of natural ground to be determined. Such as image can be displayed either two-dimensionally or three-dimensionally by image processing. If a plurality of sets of electrode rows (14) and (16) are arranged in the circumferential direction of the machine, and resistivities are detected while current having different frequencies is supplied, the collapse of the natural ground can be measured quickly.
Abstract:
The circuit board is capable of tightly bonding a cable layer on a base member even if thermal expansion coefficients of the base member and the cable layer are significantly different. The circuit board comprises: the base member; and the cable layer being laminated on the base member with anchor patterns, which are electrically conductive layers formed on a surface of the base member.
Abstract:
Provided is a circuit board including a resin base, and a resistance element formed above the resin base. The resistance element includes a resistance pattern including an electrode portion and an extending portion, and an electrode formed on the electrode portion of the resistance pattern and including a foot portion reduced in thickness toward the extending portion.
Abstract:
A substrate bonding method for mutually bonding substrates, has a first radiation step for irradiating the surfaces of the individual substrates with an oxygen particle beam, a second radiation step for irradiating the surfaces of the individual substrate with a nitrogen particle beam simultaneously with or subsequently to the first radiation step, and a step for stacking the individual substrates and bringing the surfaces thereof into close contact. Particularly, the substrates which have been irradiated first with an oxygen plasma and subsequently with a nitrogen plasma are stacked and bonded.
Abstract:
A multilayer wiring board (X1) comprises a core portion (100) and out-core wiring portion (30). The core portion (100) comprises a carbon fiber reinforced portion (10) composed of a carbon fiber material (11) and resin composition (12), and an in-core wiring portion (20) which has a laminated structure of at least one insulating layer (21) containing a glass fiber material (21a) and a wiring pattern (22) composed of a conductor having an elastic modulus of 10 to 40 GPa and which is bonded to the carbon fiber reinforced portion (10). The out-core wiring portion (30) has a laminated structure of at least one insulating layer (31) and a wiring pattern (32) and is bonded to the core portion (100) at the in-core wiring portion (20).
Abstract:
The circuit board is capable of tightly bonding a cable layer on a base member even if thermal expansion coefficients of the base member and the cable layer are significantly different. The circuit board comprises: the base member; and the cable layer being laminated on the base member with anchor patterns, which are electrically conductive layers formed on a surface of the base member.
Abstract:
The method of producing a substrate comprises the steps of: forming a through-hole in a base member; plating the base member so as to coat an inner face of the through-hole with a plated layer; applying photo resist on the base member; optically exposing and developing the photo resist so as to form a resist pattern, which coats at least a planar area of the through-hole; and etching an electrically conductive layer formed on the surface of the base member. The resist pattern is formed so as to separate an area of exposing the conductive layer a prescribed distance away from an edge of the through-hole, and the prescribed length is longer than a distance of etching a side face of the conductive layer in the etching step.