Abstract:
Provided are a curable composition including a compound expressed by General Formula (1) below; a polymerization initiator; and a chain transfer agent, and a cured polymer product. In General Formula (1), m represents an integer of 1 to 4, and n represents an integer of 1 to 4. Here, a sum of m and n is not greater than 5. MA represents a hydrogen ion, an inorganic ion, or an organic ion. Here, an inorganic ion and an organic ion may be bivalent or higher ions. Each of R1 and R2 independently represents a hydrogen atom or an alkyl group.
Abstract:
A system for providing an acidic ionized ozonated liquid. The system includes a liquid inlet arranged to accept a liquid into the system; an acid-based cation-exchange resin in fluid communication with the liquid inlet, the resin adapted to exchange cations in the accepted liquid with H+ ions on the resin; an ozone dissolving apparatus in fluid communication with the liquid inlet and the acid-based cation-exchange resin; and a liquid outlet in fluid communication with the liquid inlet, the acid-based cation-exchange resin and the ozone dissolving apparatus. The ozone dissolving apparatus and the acid-based cation-exchange resin cooperating to produce the acidic ionized ozonated liquid for dispensation out of the system via the liquid outlet.
Abstract:
Methods and systems for an integrated acid regeneration of ion exchange resins are disclosed for use in cleaning applications. Acid resins designed for use in a variety of cleaning application using a treated, softened, acidic water source are disclosed. Various methods of using the softened acidic water generated by acid regenerate-able ion exchange resins within a cleaning application, e.g. ware wash machine, are disclosed to beneficially reduce spotting, filming and scale buildup on treated surfaces, reduce and/or eliminate the need for polymers, threshold reagents and/or rinse aids, and using protons generated in the acidic water effluent for triggering events useful in various cleaning applications.
Abstract:
An aldehyde adsorbent that can adsorb and remove aldehyde from a carboxylic acid-containing liquid is provided. The aldehyde adsorbent is an aldehyde adsorbent for adsorbing aldehyde in a carboxylic acid-containing liquid containing aldehyde, including a cation exchange resin ion-exchanged with a polyvalent amine in 1 to 99% by mol of the total exchange capacity.
Abstract:
Provided is a temperature responsive adsorbent prepared by immobilizing a copolymer containing at least N-isopropylacrylamide to a base material surface. The copolymer has at least a strong cation exchange group. In addition, the copolymer contains the strong cation exchange group in an amount of 0.01 to 5 mol % relative to N-isopropylacrylamide in terms of monomer.
Abstract:
An endoluminal prosthesis for placing in a body passage of a patient, includes a ureteral stent, the ureteral stent having a generally tubular housing having a proximal end and a distal end and a lumen longitudinally disposed therethrough, with cation-exchange resin beads disposed within the tubular housing, and at least one anchoring mechanism disposed on a distal end of the tubular housing, where at least one retention screen is disposed within the lumen of the ureteral stent configured to retain the plurality of beads.
Abstract:
In alternative embodiments, the invention provides processes and methods for the recovery or the removal of the so-called “Minor Elements” consisting of iron, aluminum and magnesium (expressed as oxides), from wet-process phosphoric acid using a continuous ion exchange approach. In alternative embodiments, use of processes and methods of the invention allows for the reduction of these Minor Elements with minimal phosphate losses and dilution in order to produce a phosphoric acid that is suitable for the production of fertilizer products such as world-class diammonium phosphate (DAP), merchant-grade phosphoric acid, superphosphoric acid, and other phosphoric acid products. Further, use of the invention would allow the use of lower grade phosphate rock or ore, which would greatly expand the potential phosphate rock reserve base for phosphate mining activities, and allow for better overall utilization of resources from a given developed mine site.
Abstract:
Provided are a curable composition including a compound expressed by General Formula (1) below; a polymerization initiator; and a chain transfer agent, and a cured polymer product. In General Formula (1), m represents an integer of 1 to 4, and n represents an integer of 1 to 4. Here, a sum of m and n is not greater than 5. MA represents a hydrogen ion, an inorganic ion, or an organic ion. Here, an inorganic ion and an organic ion may be bivalent or higher ions. Each of R1 and R2 independently represents a hydrogen atom or an alkyl group.
Abstract translation:在通式(1)中,m表示1〜4的整数,n表示1〜4的整数。这里,m和n之和为5以下.MA表示氢离子,无机离子, 或有机离子。 这里,无机离子和有机离子可以是二价以上的离子。 R 1和R 2各自独立地表示氢原子或烷基。
Abstract:
A process for removing suspended particles and at least one ionic species from a feed water stream to produce a product water stream, the process includes the steps of forming agglomerates of the suspended particles in the feed water stream; passing the feed water stream containing agglomerated particles through a bed of particulate sorbent material so as to sorb the ionic species from the feed water onto the sorbent to provide a loaded sorbent and filter the agglomerated particles from the feed water using the bed of particulate sorbent material as a filtration medium to load the bed with the agglomerated particles, and thereby produce the product water stream; removing the filtered particles and the ionic species from the filtration medium; and re-using the regenerated sorbent in step b).
Abstract:
A chromatographic method for separating a sugar from a sugar-containing liquid feed mixture by: contacting the liquid feed mixture with a stratum of cation exchange resin comprising a crosslinked copolymer matrix functionalized with sulfonic acid groups, and recovering a first product stream from the stratum that has a higher purity of the sugar than present in the liquid feed mixture. The method is characterized by the stratum of cation exchange resin including: i) at least 80 wt % of cation exchange resin including alkaline earth counter ions, and ii) at least 5 wt % of cation exchange resin including alkali earth counter ions.