Abstract:
Methods for fabricating materials useful for optical detection in microfluidic and nanofluidic devices, such as those used in nanopore-based nucleic acid sequencing are described herein. In certain variations, a method of reducing background fluorescence in a MEMS material may include the step of treating a surface of the MEMS material with a low energy ion beam.
Abstract:
A method of assembling a protein nanostructure on a surface including selectively patterning a surface with a fixation site, bringing a protein node into contact with the surface, and allowing the protein node to bond with the fixation site, so that the position and/or orientation of the protein node is constrained, and compositions.
Abstract:
Embodiments of the present invention provide an integrated circuit system including a first active layer fabricated on a front side of a semiconductor die and a second pre-fabricated layer on a back side of the semiconductor die and having electrical components embodied therein, wherein the electrical components include at least one discrete passive component. The integrated circuit system also includes at least one electrical path coupling the first active layer and the second pre-fabricated layer.
Abstract:
Membrane transducer structures and thin-film encapsulation methods for manufacturing the same are provided. In one example, the thin film encapsulation methods may be implemented to co-integrate processes for thin-film encapsulation and formation of microelectronic devices and microelectromechanical systems (MEMS) that include the membrane transducers.
Abstract:
Solid state nanopore devices for nanopore applications and methods of manufacture are disclosed herein. The method includes forming a membrane layer on an underlying substrate. The method further includes forming a hole in the membrane layer. The method further comprises plugging the hole with a sacrificial material. The method further includes forming a membrane over the sacrificial material. The method further includes removing the sacrificial material within the hole and portions of the underlying substrate. The method further includes drilling an opening in the membrane, aligned with the hole.
Abstract:
Solid state nanopore devices for nanopore applications and methods of manufacture are disclosed herein. The method includes forming a membrane layer on an underlying substrate. The method further includes forming a hole in the membrane layer. The method further comprises plugging the hole with a sacrificial material. The method further includes forming a membrane over the sacrificial material. The method further includes removing the sacrificial material within the hole and portions of the underlying substrate. The method further includes drilling an opening in the membrane, aligned with the hole.
Abstract:
The invention exploits a widely used device in micro-fluidics, the electro-osmotic pump (EOP), to create very low energy micro-scale and macro-scale mechanical actuators. The EOP uses electrical fields to move naturally occurring charged particles (ions) through a fluid medium. As the ions move in response to the applied field, they drag the (non-charged) fluid along, establishing bulk flow. When confined to a narrow chamber, a pressure gradient can be established. The combination of pressure gradient and flow performs mechanical work. With the use of electro-osmotic pumps, the invention enables actuators to be constructed in a variety of embodiments, including for example, a sheet structure, a piston structure, and a cellular structure to name a few.
Abstract:
The present invention relates to a method for functionalizing fluid lines (1b) in a micromechanical device, the walls of which include an opaque layer. For this purpose, the invention provides a method for functionalizing a micromechanical device provided with a fluid line including a peripheral wall (5) having a surface (2) outside the line and an inner surface (3) defining a space (1b) in which a fluid can circulate, the peripheral wall at least partially including a silicon layer (5a). The method includes the following steps: a) providing a device, the peripheral wall (5) of which at least partially includes a silicon layer (5a) having, at least locally, a thickness (e) of more than 100 nm and less than 200 nm, advantageously of 160 to 180 nm; c) silanizing at least the inner surface of the fluid line; d) the localized, selective photo-deprotection on at least the inner surface of the silanized device by exposing the peripheral wall (5) at the point at which said wall has a thickness (e) of more than 100 nm and less than 200 nm, advantageously of 160 to 180 nm.
Abstract:
Solid state nanopore devices for nanopore applications and methods of manufacture are disclosed herein. The method includes forming a membrane layer on an underlying substrate. The method further includes forming a hole in the membrane layer. The method further comprises plugging the hole with a sacrificial material. The method further includes forming a membrane over the sacrificial material. The method further includes removing the sacrificial material within the hole and portions of the underlying substrate. The method further includes drilling an opening in the membrane, aligned with the hole.
Abstract:
A method of manufacturing an integrated circuit having a substrate comprising a plurality of components and a metallization stack over the components, the metallization stack comprising a first sensing element and a second sensing element adjacent to the first sensing element.