Abstract:
A method for manufacturing an electrical device that includes: anodizing a portion of an anodizable metal layer so as to obtain an anodic porous oxide region and an anodizable metal region adjoining the anodic porous oxide region, the anodic porous oxide region being thicker than the anodizable metal region; depositing a layer of liner material on the anodic porous oxide region and on the anodizable metal region; depositing a layer of filler material on the layer of liner material to obtain a stacked structure having a top surface; planarizing the stacked structure from a top surface thereof until reaching the layer of the liner material, so as to expose a portion of liner material located above at least a portion of the anodic porous oxide region; and removing the exposed portion of liner material.
Abstract:
A semiconductor device includes a capacitor. The capacitor includes a bottom electrode, a dielectric layer, and a top electrode that are sequentially stacked in a first direction. The dielectric layer includes a first dielectric layer and a second dielectric layer that are interposed between the bottom electrode and the top electrode and are stacked in the first direction. The first dielectric layer is anti-ferroelectric, and the second dielectric layer is ferroelectric. A thermal expansion coefficient of the first dielectric layer is greater than a thermal expansion coefficient of the second dielectric layer.
Abstract:
In a semiconductor device (SD), plate-shaped upper electrodes (UEL) are formed on a lower electrode (LEL) with a dielectric film (DEC) interposed therebetween. The lower electrode (LEL), the dielectric film (DEC), and the upper electrodes (UEL) constitute MIM capacitors (MCA). One of the upper electrodes (UEL) and another upper electrode (UEL) that are adjacent to each other are arranged at an equal distance (D1), without the guard ring being interposed therebetween. The upper electrodes (UEL) positioned on the outermost periphery and the guard ring (GR) positioned outside those upper electrodes UEL are arranged at a distance equal to the distance (D1) from each other.
Abstract:
Embodiments of the present disclosure provide a GOA unit and a method for producing the same and a gate driver circuit, which are directed to a field of display technique. The GOA unit includes: a TFT module and a capacitor structure formed on a substrate. The TFT module includes a gate electrode, a source electrode and a drain electrode, and the capacitor structure includes a first electrode and a second electrode configured to form a first capacitor. The gate of the TFT module is located in a same layer as the first electrode of the capacitor structure, the source electrode and the drain electrode of the TFT module are located in a same layer as the second electrode of the capacitor structure, and the second electrode has a groove. Embodiments of the present application are used for a display apparatus.
Abstract:
A method is presented for forming a semiconductor structure. The method includes forming a plurality of fins on a first region of the semiconductor substrate, forming a bi-polymer structure, selectively removing the first polymer of the bi-polymer structure and forming deep trenches in the semiconductor substrate resulting in pillars in a second region of the semiconductor structure. The method further includes selectively removing the second polymer of the bi-polymer structure, doping the pillars, and depositing a high-k metal gate (HKMG) over the first and second regions to form the MIS capacitor in the second region of the semiconductor substrate.
Abstract:
Provided is a method for manufacturing a power storage device in which a crystalline silicon layer including a whisker-like crystalline silicon region is formed as an active material layer over a current collector by a low-pressure CVD method in which heating is performed using a deposition gas containing silicon. The power storage device includes the current collector, a mixed layer formed over the current collector, and the crystalline silicon layer functioning as the active material layer formed over the mixed layer. The crystalline silicon layer includes a crystalline silicon region and a whisker-like crystalline silicon region including a plurality of protrusions which project over the crystalline silicon region. With the protrusions, the surface area of the crystalline silicon layer functioning as the active material layer can be increased,
Abstract:
Semiconductor structures including a plurality of conductive structures having a dielectric material therebetween are disclosed. The thickness of the dielectric material spacing apart the conductive structures may be adjusted to provide optimization of capacitance and voltage threshold. The semiconductor structures may be used as capacitors, for example, in memory devices. Various methods may be used to form such semiconductor structures and capacitors including such semiconductor structures. Memory devices including such capacitors are also disclosed.
Abstract:
Back end of the line (BEOL) capacitors and methods of manufacture are provided. The method includes forming wiring lines on a substrate, with spacing between adjacent wiring lines. The method further includes forming an air gap within spacing between the adjacent wiring lines by deposition of a capping material. The method further includes opening the air gap between selected adjacent wiring lines. The method further includes depositing conductive material within the opened air gap.
Abstract:
Capacitor structures having first electrodes at least partially embedded within a second electrode, and fabrication methods are presented. The methods include, for instance: providing the first electrodes at least partially within an insulator layer, the first electrodes comprising exposed portions; covering exposed portions of the first electrodes with a dielectric material; and forming the second electrode at least partially around the dielectric covered portions of the first electrodes, the second electrode being physically separated from the first electrodes by the dielectric material. In one embodiment, a method further includes exposing further portions of the first electrodes; and providing a contact structure in electrical contact with the further exposed portions of the first electrodes. In another embodiment, some of the first electrodes are aligned substantially parallel to a first direction and other of the first electrodes are aligned substantially parallel to a second direction, the first and second directions being different directions.
Abstract:
In one embodiment a charge storage device includes first (110) and second (120) electrically conductive structures separated from each other by a separator (130). At least one of the first and second electrically conductive structures includes a porous structure containing multiple channels (111, 121). Each one of the channels has an opening (112, 122) to a surface (115, 125) of the porous structure. In another embodiment the charge storage device includes multiple nanostructures (610) and an electrolyte (650) in physical contact with at least some of the nanostructures. A material (615) having a dielectric constant of at least 3.9 may be located between the electrolyte and the nanostructures.