Abstract:
To achieve an intermediate lock state in a short period when an engine is stopped and improve the accuracy of confirmation of the intermediate lock state, an engine valve timing control apparatus includes a variable valve timing mechanism configured to vary engine valve timing, and an intermediate lock mechanism configured to restrict relative rotation positions of a first and a second rotor of the valve timing mechanism at an intermediate lock position for starting the engine. Upon detection of an engine stop request, the valve timing mechanism and the intermediate lock mechanism are driven and controlled for establishing an intermediate lock state. When a predetermined period from detection of the engine stop request has expired without detecting the intermediate lock state within the predetermined period, an engine stopping process is executed. Even after the engine stopping process has been executed, monitoring of the intermediate lock state is continued.
Abstract:
A rotor (1, 21, 41) for a camshaft adjuster (61), having a rotor base body (3, 23, 43) and a number of rotor blades (5, 25, 45) extending radially outwards and located on the rotor base body (3, 23, 43), each of the blades having a blade end (7, 27, 47). To reduce leakage, the blade ends (7, 27, 47) of the rotor blades (5, 25, 45) take the form of sealing fins (9, 31, 49) that can be deformed radially outwards. A rotor (1, 21, 41) of this type affords the possibility of reducing leakage in a camshaft adjuster (61) using simple engineering and without added costs. The invention also relates to a camshaft adjuster (61) for an internal combustion engine, including a rotor (1, 21, 41) of this type.
Abstract:
A camshaft adjuster arrangement (2) having a camshaft (4) and a rotor (6) for a camshaft adjuster. The rotor (6) has a central bore (8) for a fixing element (14), the rotor being mounted on the camshaft (4) in a rotationally fixed manner by the fixing element (14). The mounting of the camshaft adjuster arrangement (2) is simplified by forming a frictional connection between the camshaft (4) and the rotor (6) using a clamping unit (16).
Abstract:
An ECU transmits a pulsed operation command signal, indicating operation commands for an electric motor used as a VVT actuator, to an electric-motor EDU. The electric-motor EDU recognizes the combination of the direction in which the actuator should be operated (actuator operation direction) and the control mode based on the duty ratio of the operation command signal, and the rotational speed command value based on the frequency of the operation command signal. The electric-motor EDU controls the electric motor according to the control commands. The duty ratio indicating the combination is set such that even if the duty ratio is falsely recognized, a false recognition concerning the actuator operation direction is prevented, such false recognition causing the valve phase to change in an undesirable direction, and even if the actuator operation direction is falsely recognized, the rate of change in the phase is restricted.
Abstract:
A device (1) for modifying the control times of an internal combustion engine (100) is provided, including a drive gear (13), a driven element (4) and a swashplate mechanism (2). The torque of the crankshaft (101) is transferred via a primary drive to the drive gear (13), and via the swashplate mechanism (2) to the driven element (4) which is connected in a rotationally fixed manner to the camshaft (11). The drive gear (13) can be rotated in relation to the driven element (4) via the swashplate mechanism (2), whereby a continuous phase modification of the camshaft (11) relative to the crankshaft is possible. According to the invention, foreign body collecting pockets (33) are provided in the housing of the swashplate mechanism (2), wherein foreign substances entering into the lubricant can be collected.
Abstract:
A variable valve-operating system for an internal combustion engine, comprising a cylinder head having an intake or exhaust valve, a camshaft rotatably supported by the cylinder head, a cam body rotatably fitted around the camshaft and including a cam lobe having an outer peripheral surface for driving the valve and a boss protruding radially from the cam body, and a valve open period-varying mechanism supported on the camshaft and including an intermediate rotating member having a center of rotation offset from the camshaft, the mechanism transmits rotation of the camshaft to the boss of the cam body through the intermediate rotating member and also permits the valve open period of the valve to be varied through adjustment of the eccentric phase angle of the intermediate rotating member, wherein at least a part of the boss is so positioned as to overlap with the profile of a nose of the cam lobe when viewed in the axial direction of the cam body.
Abstract:
In a valve timing controller, the guide-groove biases the moving element in a direction in which the moving element slides with respect to a radial line connecting a center of the guide-rotational element and the moving element, when the guide-rotational element relatively rotates with respect to the first rotational element. The direction in which the moving elements are pushed and the direction in which the moving elements moves are substantially identical to each other.
Abstract:
In the case where an intake valve has its phase in a first region between a most retarded angle and CA(1), the rotational speed of relative rotation between an output shaft of an electric motor and a sprocket is reduced at a reduction gear ratio R(1) to change the phase of the intake valve. In the case where the intake valve has its phase in a second region between CA(2) and a most advanced angle, the rotational speed of relative rotation is reduced at a reduction gear ratio R(2) to change the phase of the intake valve. As long as the rotational direction of relative rotation is the same, the phase of the intake valve is changed in the same direction for both of the first region between the most retarded angle and CA(1) and the second region between CA(2) and the most advanced angle.
Abstract:
A device for varying valve timing in an internal combustion engine comprises an adjusting mechanism for varying an angle of rotation between a drive pinion (2) and a camshaft (end portion of the camshaft 1), said adjusting mechanism being configured as a wobble transmission. The drive pinion (2) comprises a first front-end gearing (9) and a disk (10) comprises a second front-end gearing (11), which first and second front-end gearings mesh partially with each other, and the number of teeth of said front-end gearings differ from each other by at least one tooth. To reduce the overall dimensions of the device and avoid gearing lash, it is proposed, on the one hand, to connect the disk (10) rotationally fast to the camshaft (1) and on the other hand, to configure the disk (10) in axial direction of the camshaft (1) as a flexible element that can be deformed in axial direction by an adjusting device (thrust plate 17).
Abstract:
A valve timing control device includes a drive pulley 2 driven by a crankshaft of an engine, and a driven camshaft 1. The camshaft 1 has a cam 70 that serves to open and close an intake port 72. An engine valve 71 is spring-loaded by a valve spring 73, whereas the cam 70 opens or closes the engine valve 71 against the bias of the spring 73. Torque is transmittable between the drive pulley 2 and the camshaft 1, and a rotation angle adjusting mechanism 4 is provided therebetween. The rotation angle adjusting mechanism 4 has a movable operating member 11 being movable in a radial direction.