Abstract:
A fracturing device includes a power unit, and the power unit includes a muffling compartment, a turbine engine, and an air intake unit. The air intake unit is communicated with the turbine engine through an intake pipe and configured to provide a combustion-supporting gas to the turbine engine; the air intake unit is at a top of the muffling compartment and the muffling compartment has an accommodation space, the turbine engine is within the accommodation space. A fan is further provided to generate wither positive pressure or negative presser in the muffling compartment to facilitate a cooling of the turbine engine.
Abstract:
A fracturing device includes a power unit, and the power unit includes a muffling compartment, a turbine engine, and an air intake unit. The air intake unit is communicated with the turbine engine through an intake pipe and configured to provide a combustion-supporting gas to the turbine engine; the air intake unit is at a top of the muffling compartment and the muffling compartment has an accommodation space, the turbine engine is within the accommodation space. A fan is further provided to generate wither positive pressure or negative presser in the muffling compartment to facilitate a cooling of the turbine engine.
Abstract:
A fracturing device, a firefighting method thereof, and a computer readable storage medium are disclosed. The fracturing device includes a power unit, the power unit includes a muffling compartment, a turbine engine, and a firefighting system; the firefighting system includes a firefighting material generator, at least one firefighting sprayer and at least one firefighting detector, the at least one firefighting sprayer and the at least one firefighting detector are located in the muffling compartment, each of the at least one firefighting sprayer is connected with the firefighting material generator and configured to spray out firefighting material generated by the firefighting material generator.
Abstract:
A fracturing device, including a power unit, wherein the power unit comprises a muffling compartment, a turbine engine, an air intake unit, and a starter; the air intake unit is communicated with the turbine engine through an intake pipe, and configured to provide a combustion-supporting gas to the turbine engine; the air intake unit is located at the top of the muffling compartment, the muffling compartment comprises an accommodation space, the turbine engine and the starter are located in the accommodation space, and the starter is configured to start the turbine engine, the starter comprises a first electric motor.
Abstract:
A power supply system and method includes a power grid input unit and a diesel generator input unit, separately used for supplying an alternating current to a power supply unit. An automatic transfer switch unit is connected to the power grid input unit and the power supply unit or connected to the diesel generator input unit and the power supply unit, which is used for converting the received alternating current into a direct current. A control unit, which is used for monitoring a current load current and current diesel generator power, determines when to turn off a preset number of power supply loads according to a magnitude relationship between the current diesel generator power and the current load power, as well as according to priority levels of current loads. The power supply system is a flexible power supply system and includes the oil engine and a plurality of loads.
Abstract:
An engine assembly includes an engine, an external oil reservoir, a supply pump, and a return pump. The engine includes an oil gallery configured to distribute oil and a crankcase chamber. The external oil reservoir includes an oil tank defining an oil chamber and an oil filter assembly including a housing at least partially defining a filter chamber, and a filter positioned within the filter chamber. The supply pump is in fluid communication with the oil chamber and the oil gallery and the supply pump is configured to draw oil from the oil chamber and provide pressurized oil to the oil gallery. The return pump in fluid communication with the crankcase chamber and the filter chamber and the return pump is configured to draw oil from the crankcase chamber and provide pressurized oil to the filter chamber.
Abstract:
A hydraulic system of a transmission having a controller and a variable displacement pump. The pump includes an inlet and outlet and is adapted to be driven by a torque-generating mechanism. The system also includes a lube circuit fluidly coupled to the pump. A lube regulator valve is disposed in the lube circuit, such that the lube regulator valve is configured to move between at least a regulated position and an unregulated position. The regulated position corresponds to a regulated pressure in the lube circuit. A pressure switch is fluidly coupled to the lube regulator valve and configured to move between a first position and a second position, where the switch is disposed in electrical communication with the controller. A solenoid is disposed in electrical communication with the controller and is controllably coupled to the pump to alter the displacement of the pump.
Abstract:
The present disclosure provides a hydraulic system of a transmission having a controller and a variable displacement pump. The pump includes an inlet and outlet and is adapted to be driven by a torque-generating mechanism. The system also includes a lube circuit fluidly coupled to the pump. A lube regulator valve is disposed in the lube circuit, such that the lube regulator valve is configured to move between at least a regulated position and an unregulated position. The regulated position corresponds to a regulated pressure in the lube circuit. A pressure switch is fluidly coupled to the lube regulator valve and configured to move between a first position and a second position, where the switch is disposed in electrical communication with the controller. A solenoid is disposed in electrical communication with the controller and is controllably coupled to the pump to alter the displacement of the pump.
Abstract:
A lubricating configuration in a two-stroke cycle, opposed-piston engine for a piston wristpin minimizes losses in oil pressure at the wristpin as the piston approaches bottom center and reduces the required oil supply pressure to the engine. The wristpin is constructed to absorb and store oil pressure energy when oil pressure at the wristpin is high, and to release that stored energy to pressurize the oil at the wristpin when connecting rod oil pressure is low.