Abstract:
An apparatus having a linear structure that enables real time measurement of the spatial profile, circularity, centroid, astigmatism and M2 values of a laser beam generated by a low power laser beam. A laser beam source transmits a laser beam through a focusing lens, a Fabry-Perot resonator, a pair of polarizers and a camera that detects spots of light that pass through the first and second mirrors and the polarizers. The resonator includes a pair of high reflecting mirror plates disposed in parallel, spaced apart relation to one another at a common angle of incidence to the laser beam. The polarizers are disposed at an opposite angle of incidence and are rotationally adjustable to enable intensity adjustment of the camera.
Abstract:
A light guide module is disclosed in the present invention. The light guide module includes a light guide plate, and an optical reflecting structure disposed on a bottom of the light guide plate. A beam is transmitted into the light guide plate through its side surface. Total internal reflection characters of the light guide plate is interfered by the optical reflecting structure, so that the beam can emit out of the light guide plate through a light emitting surface of the light guide plate. The optical reflecting structure includes a first reflecting layer disposed on the bottom, and a second reflecting layer formed above the first reflecting layer. The beam is absorbed by the first reflecting layer. The beam is reflected out of the light emitting surface via the second reflecting layer, and the second reflecting layer is between the first reflecting layer and the light guide plate.
Abstract:
An occupancy sensor with a separable override unit can selectively override the operation of the occupancy sensor at designated times and for selected time intervals. The occupancy sensor includes a light sensor to actuate the occupancy sensor and a light assembly when the ambient light is below a predetermined level and to deactivate the occupancy sensor when the ambient light is above a threshold level. The override unit is provided with a light source, such as an LED, to emit light to actuate the light sensor of the occupancy sensor, thereby controlling the occupancy sensor, such as by preventing the occupancy sensor from being actuated. The occupancy sensor includes a cavity for receiving the override unit with the LED aligned with the light sensor: A control unit is operatively connected to one or more override units for selectively controlling the normal operation of the occupancy sensor.
Abstract:
A collector for propagating incident radiation is disclosed. The collector may comprise a light directing component coupled to a buffer component, a first propagation component coupled to the buffer component and configured to transmit the incident radiation into a collector region through one of a plurality of windows, and an optical transport assembly coupled to an end of the collector region and having a second propagation component. Each light directing component may be configured to redirect the incident radiation from a first direction to a second direction, and the collector region may include a plurality of regions exhibiting a refractive index value that gradually transitions from about 1.5 to about 2.0. The second propagation component may be further configured to retain the incident radiation.
Abstract:
A thermal absorption structure of a radiation thermal detector element may include an optically transitioning material configured such that optical conductivity of the thermal absorption structure is temperature sensitive and such that the detector element absorbs radiation less efficiently as its temperature increases, thus reducing its ultimate maximum temperature.
Abstract:
The invention provides a spatially-selective reflective structure for the detection of submillimeter electromagnetic waves and systems and methods incorporating spatially-selective reflective structures. One aspect of the invention provides a spatially-selective reflective structure including a partially-conducting slab and a modulating reflector disk adjacent to the partially-conducting slab. The modulating reflector disk includes a plurality of modulations. Another aspect of the invention provides a submillimeter imaging device including submillimeter wave optics, a spatially-selective reflective structure located in the focal plane of the submillimeter wave optics, a submillimeter wave receiver positioned to capture waves reflected from the spatially-selective reflective structure, and a motor configured to rotate the spatially-selective reflective structure. The spatially-selective reflective structure includes a partially-conducting slab and a modulating reflector disk adjacent to the partially-conducting slab. The modulating reflector plate includes one or more modulations.
Abstract:
Electronic displays encounter visibility issues due to varying ambient light conditions. An ambient light sensor can be provided to sense ambient light and dynamically adjust display brightness to compensate for changes in ambient light. A wave guide for improving angular response in a light sensor is provided.
Abstract:
An optical sensor based on a broadband light source and cascaded waveguide filters comprises a broadband light source, an input waveguide, a reference ring resonator coupled with the input waveguide, a common bus waveguide coupled with the reference ring resonator, a sensing ring resonator coupled with the common bus waveguide, an output waveguide coupled with the sensing ring resonator, and two optical power detectors. At least a portion of the sensing ring resonator is influenced by the physical parameter to be measured or in contact with an analyte. The variation of the physical parameter to be measured or the variation of the analyte induces a shift of the transmission spectrum of the sensing ring resonator. By using the cascaded filtering effect of the double resonators, the wavelength shift can be translated into a variation of the total output power. Consequently the physical parameter to be measured can be easily deduced.
Abstract:
Electronic displays encounter visibility issues due to varying ambient light conditions. An ambient light sensor can be provided to sense ambient light and dynamically adjust display brightness to compensate for changes in ambient light. A wave guide for improving angular response in a light sensor is provided.
Abstract:
A light detecting device includes a case, a light introducing member and a light receiving element. A predetermined light is incident into an inlet face of the introducing member, and an outlet face of the introducing member emits the light incident into the inlet face. A first distance is defined between a top point of the outlet face and a focus of the introducing member, and a second distance is defined between the top point of the outlet face and a light receiving face of the receiving element. The outlet face has a convex lens shape in a manner that the first distance is smaller than the second distance.