Abstract:
Thermally controlled enclosures that can be used with gas analyzers are described. The enclosures incorporate one or more phase changing materials that buffer ambient and internal heat loads to reduce the power consumption demand of mechanical or electronic heating apparatus. Maintenance of gas analyzer equipment at a consistent temperature can be important to achieving stable and reproducible results. Related systems, apparatus, methods, and/or articles are also described.
Abstract:
A scanning mechanism 6 moves an optical head 5 relative to a mount plate 2 in a scan direction, and light emitting diodes 3A, 3B mounted on the optical head 5 emit their respective beams of measurement light along the scan direction and onto two color regions TP3, TP3, respectively, of an immunochromatographic test strip mounted on the mount plate 2. Photodiodes 4A, 4B mounted on the optical head 5 receive respective beams of reflected light from the two color regions TP3, TP3 perpendicularly to colored lines on the immunochromatographic test strip, thereby implementing simultaneous measurement of color intensities of the colored lines formed in the two color regions TP3, TP3 of the immunochromatographic test strip.
Abstract:
A method and apparatus is provided for determining a property of an analyte using a sensing layer whose optical response changes with the analyte. The apparatus includes a housing with an optically transparent window for receiving the sensing layer. The window passes optical stimulation to the sensing layer and the optical response from the sensing layer. A stimulating light emitter is coupled to a first face of an optical body monolithically coupled to the window and a light detector is coupled to a second face of the optical body for receiving the response. The optical response changes as the concentration of the analyte changes. Reference molecules included in the sensing layer can provide a calibration signal to a second light detector mounted on a third face of the optical body. The first, second and third faces of the optical body are different and not coplanar.
Abstract:
Methods and systems for determining characteristics of fluids are described. A method involves illuminating a portion of a fluid by emitting light having an emission spectrum spanning at least from an infrared band to an ultraviolet band, and producing an output signal by receiving the light upon being scattered by the fluid using an optical detector. A controller may select a target sub-band of the emission spectrum based on information associated with the fluid, and may further determine a characteristic of the fluid using at least a portion of the output signal associated with the target sub-band of the emission spectrum. Alternatively, or additionally, a controller may apply an operator to the output signal, and may further determine the characteristic of the first fluid by applying a machine learning model to a result of the operator as applied to the first output signal.
Abstract:
A method of analyzing a sample is disclosed. The method includes the steps of measuring a spectral response of the sample, selecting a reference material having a Raman peak with a magnitude at a wave number, measuring a peak value in the spectral response at the wave number, and determining an amount of the reference material in the sample based in part on a ratio of the measured peak value to the magnitude of the Raman peak of the reference material.
Abstract:
An optical sensor device (1) for a fluid substance (LS) comprises a device body (2) having a detection portion (14), associated to which is a sensitive optical part that comprises at least one of an emitter (20) and a receiver (21) of an optical radiation (Re, Rr). The detection portion (14) is made of a material transparent to the optical radiation (Re, Rr) and has an inner surface (23a, 23b) and an outer surface (15), the outer surface (15) being designed to be in contact with the fluid substance (LS) and the inner surface (23a, 23b) being designed to be isolated from the fluid substance. The at least one of the emitter (20) and the receiver (21) of the sensitive optical part is optically coupled to the inner surface (23a, 23b) of the detection portion (14), in such a way that the optical radiation (Re, Rr) is at least in part propagated through the detection portion (14), in particular with an angle and/or an intensity that is variable as a function of a characteristic of the fluid substance. The optical sensor device (1) comprises a protection arrangement, configured for preventing possible deformation of the detection portion (14) caused by an increase in volume of the fluid substance (LS), in particular deformation of at least one of its inner surface (23a, 23b) and its outer surface (15). The protection arrangement comprises at least one compensation element (13) having an elastically deformable body, which is able to contract, for compensating thereby a possible increase in volume of the fluid substance (LS) or else for enabling a reversible displacement of the detection portion (14) following upon a possible increase in volume of the fluid substance (LS).
Abstract:
Assays (100) may be performed with a luminometer (400) having a chassis (405) that may include a reaction vessel chamber (610). The luminometer (400) may also include a light passage (640) that intersects the reaction vessel chamber (610). The luminometer (400) may also include a cap (415) that, when in a closed configuration, prevents light emitted by external sources from entering the reaction vessel chamber (610) and from entering the light passage (640). The cap (415) may provide access to the reaction vessel chamber (610) when in an open configuration. The luminometer (400) may also include a calibration light source (460) optically coupled to one end of the light passage (640) and a light detector (630) optically coupled to another end of the light passage (640). The light detector (630) may include a sensing element for receiving light from the light passage (640).
Abstract:
A luminometer (400) includes a light detector (630) configured to sense photons (135). The luminometer (400) includes an analog circuit (915a) configured to provide an analog signal (965) based on the photons (135) emitted from assay reactions over a time period and a counter circuit (915b) configured to provide a photon count (970) based on the photons (135) emitted from the assay reactions over the time period. The luminometer (400) includes a luminometer controller (905) configured to, in response to an analog signal value of the analog signal (965) being greater than a predetermined value, determine and report a measurement value of the photons (135) emitted from the assay reactions over the time period based on the analog signal value of the analog signal (965) and a linear function (1010). Optionally, the linear function (1010) is derived from a relationship between the analog signal (965) and the photon count (970).
Abstract:
A vehicle configured for conveying at least one container. The vehicle has a supporting portion configured for holding said container, and a primary lifting mechanism for controlling elevation of the supporting portion. The lifting mechanism is configured to move the supporting portion between an elevated position and a lowered position. The supporting portion is configured for assuming a retracted state associated with a first outline of the vehicle when seen from above, and combinable at least with the lowered position of the supporting portion, and an extended state associated with a second outline of the vehicle when seen from above and combinable at least with the elevated position of the supporting portion. The supporting portion in its extended state has projecting areas, projecting in the second outline relative to the first outline and configured for supporting said container.
Abstract:
Embodiments of the present disclosure provide a safety protection device for Raman spectroscopy detection and a Raman spectroscopy detection system including the safety protection device. The safety protection device includes: a detection cavity including a cavity body, the cavity body having an opening end through which a sample to be detected is allowed to be placed into the detection cavity; and a cover configured to cover and engage the opening end so as to form, together with the detection cavity, an explosion proof container defining a space for receiving the sample to be detected, the detection cavity further includes a detection opening formed in the cavity body such that a Raman detection probe is allowed to be inserted into the space through the detection opening so as to detect the sample.