Abstract:
This invention relates to high power X-ray sources, in particular to those equipped with a rotating X-ray anode capable of delivering a higher short time peak power than conventional rotating x-ray anodes. This invention can overcome the thermal limitation of peak power by allowing fast rotation of the anode and by introducing a lightweight material with high thermal conductivity in the region adjacent to the focal track material. The fast rotation can be provided by using sections of the rotating anode disk made of anisotropic high specific strength materials with high thermal stability that can be specifically adapted to the high stresses of anode operation. Uses include high speed image acquisition for X-ray imaging, for example, of moving objects in real-time such as in medical radiography.
Abstract:
An anode (30) is formed by building a carbon, such as a carbon reinforced carbon composite, or other ceramic substrate (50). A ductile, refractory metal is electroplated on the ceramic substrate to form a refractory metal carbide layer (52) and a ductile refractory metal layer (54), at least on a focal track portion (36). A high-Z refractory metal is vacuum plasma sprayed on the ductile refractory metal layer to forma vacuum plasma sprayed high-Z refractory metal layer (56), at least on the focal track portion.
Abstract:
The present invention provides a transmission type X-ray tube and a reflection type X-ray tube. The transmission type X-ray tube comprises a target and a filter material. The target has at least one element which produces X-rays as being excited. The X-rays comprise characteristic Kα and Kβ emission energies of the element for producing images of an object impinged by the X-rays. The filter material through which the X-rays pass has a k-edge absorption energy that is higher than the Kα emission energies and is lower than the Kβ emission energies. The thickness of the filter material is at least 10 microns and less than 3 millimeters.
Abstract:
A target for X-ray generation has a substrate and a target portion. The substrate is comprised of diamond and has a first principal surface and a second principal surface opposed to each other. A bottomed hole is formed from the first principal surface side in the substrate. The target portion is comprised of a metal deposited from a bottom surface of the hole toward the first principal surface. An entire side surface of the target portion is in close contact with an inside surface of the hole.
Abstract:
A rotary anode for an X-ray tube includes a ceramic base body that carries a focal path for emitting X-rays during electron irradiation. The ceramic base body is made of a mixture of silicon carbide and at least one high temperature-resistant diboride.
Abstract:
According to one embodiment, there is provided an X-ray tube target. The X-ray tube target has a structure in which a carbon base material is bonded with an Mo base material or Mo alloy base material with a joint layer. The joint layer includes an MoNbTi diffusion phase, an NbTi alloy phase, an Nb-rich phase and a ZrNb alloy phase when the ratios of components in the joint layer are detected by EPMA.
Abstract:
This invention relates to the use of thick target materials 50 microns and thicker for an x-ray transmission tube; to possible target material compositions including various elements and their alloys, eutectic alloys, compounds, or intermetallic compounds; and applications for utilizing such thick target transmission x-ray tubes. The target comprises at lease one portion of the target with a thickness of 50 microns or greater. The target can be optionally attached to a substrate end-window essentially transparent to x-rays or be thick enough so that no such substrate is required. Applications include producing a high percentage of monochromatic line mission x-rays of said thick target for use in reduced dose medical imaging and other non-destructive testing applications.
Abstract:
An X-ray target assembly includes a substrate, a target supported by the substrate adapted to generate X-rays when impinged by an electron beam, and an enclosure over the target providing a volume for the target. The enclosure is made of a material substantially transparent to electrons. The volume is substantially vacuum or filled with an inert gas.
Abstract:
The present invention is related to high power X-ray sources, in particular to those ones that are equipped with rotating X-ray anodes capable of delivering a much higher short time peak power than conventional rotating X-ray anodes according to the prior art. The herewith proposed design principle thereby aims at overcoming thermal limitation of peak power by allowing extremely fast rotation of the anode and by introducing a lightweight material with high thermal conductivity (2) in the region adjacent to the focal track material (4). The extremely fast rotation is enabled by providing sections of the rotary anode disk made of anisotropic high specific strength materials with high thermal stability (1, 3, 6) which will be specifically adapted to the high stresses building up when the anode is operated, as for example fiber-reinforced ceramic materials. An X-ray system equipped with a high peak power anode according to the present invention will be capable of high speed image acquisition with high resolution and high coverage. Such a high-speed rotary anode disk can advantageously be applied in X-ray tubes for material inspection or medical radiography, for X-ray imaging applications which are needed for acquiring image data of moving objects in real-time, such as e.g. in the scope of cardiac CT, or for any other X-ray imaging application that requires high-speed image data acquisition. According to a further exemplary embodiment, the invention is directed to a rotary anode disk divided into distinct anode segments (10a, 10b) with adjacent anode segments which may e.g. be limited to each other by straight radial (14a) or S-shaped slits (14b) ranging from the inner anode bulk (1) to the inner radial edge of the anode disk's outer frame section (3). Other exemplary embodiments of the present invention relate to a rotary anode disk structure design which comprises liquid metal conductors (16a) between the inner anode bulk (1) and a rotary shaft (12) needed for rotating the rotary anode disk about its rotational axis (5), said liquid metal conductors (16a) providing a liquid metal connection between the rotary anode and its rotary shaft (12), or to a rotary anode disk structure which comprises a sliding radial connection (17) and a flexible heat conductor (18) between the inner anode bulk (1) and the rotary shaft (12).
Abstract:
According to one embodiment, there is provided an X-ray tube target. The X-ray tube target has a structure in which a carbon base material is bonded with an Mo base material or Mo alloy base material with a joint layer. The joint layer includes an MoNbTi diffusion phase, an NbTi alloy phase, an Nb-rich phase and a ZrNb alloy phase when the ratios of components in the joint layer are detected by EPMA.