Abstract:
For a first period of time, a higher radiofrequency power is applied to generate a plasma in exposure to a substrate, while applying low bias voltage at the substrate level. For a second period of time, a lower radiofrequency power is applied to generate the plasma, while applying high bias voltage at the substrate level. The first and second periods of time are repeated in an alternating and successive manner for an overall period of time necessary to produce a desired effect on the substrate. In some embodiments, the first period of time is shorter than the second period of time such that on a time-averaged basis the plasma has a greater ion density than radical density. In some embodiments, the first period of time is greater than the second period of time such that on a time-averaged basis the plasma has a lower ion density than radical density.
Abstract:
For a first period of time, a higher radiofrequency power is applied to generate a plasma in exposure to a substrate, while applying low bias voltage at the substrate level. For a second period of time, a lower radiofrequency power is applied to generate the plasma, while applying high bias voltage at the substrate level. The first and second periods of time are repeated in an alternating and successive manner for an overall period of time necessary to produce a desired effect on the substrate. In some embodiments, the first period of time is shorter than the second period of time such that on a time-averaged basis the plasma has a greater ion density than radical density. In some embodiments, the first period of time is greater than the second period of time such that on a time-averaged basis the plasma has a lower ion density than radical density.
Abstract:
Provided may include an electron beam generator, an image apparatus including the same, and an optical apparatus. The optical apparatus includes a first and second laser apparatuses providing a first and second laser beams on a substrate, and a first optical system provided between the first and second laser apparatuses and the substrate to focus the first and second laser beams. The first and second laser beams overlap with each other generating an interference beam, thereby decreasing a spot size of the interference beam to be smaller than a wavelength of each of the first and second laser beams at a focal point.
Abstract:
The present invention relates to a substrate etching device capable of improving uniformity of in-plane density of generated plasma to uniformly etch an entire substrate surface. A plasma etching device 1 includes a chamber 2 having a plasma generation space 3 and a processing space 4 set therein, a coil 30 disposed outside an upper body portion 6, a platen 40 disposed in the processing space 4 for placing a substrate K thereon, an etching gas supply mechanism 25 supplying an etching gas into the plasma generation space 3, a coil power supply mechanism 35 supplying RF power to the coil 30, and a platen power supply mechanism 45 supplying RF power to the platen 40. Further, a tapered plasma density adjusting member 20 is fixed on an inner wall of the chamber 2 between the plasma generation space 3 and the platen 40 and, in an upper portion of the chamber 2, a cylindrical core member 10 having a tapered portion formed thereon having a diameter decreasing toward a lower end surface thereof is arranged to extend downward.
Abstract:
An ion beam system includes a grid assembly having a substantially elliptical pattern of holes to steer an ion beam comprising a plurality of beamlets to generate an ion beam, wherein the ion current density profile of a cross-section of the ion beam is non-elliptical. The ion current density profile may have a single peak that is symmetric as to one of the two orthogonal axes of the cross-section of the ion beam. Alternatively, the single peak may be asymmetric as to the other of the two orthogonal axes of the cross-section of the ion beam. In another implementation, the ion current density profile may have two peaks on opposite sides of one of two orthogonal axes of the cross-section. Directing the ion beam on a rotating destination work-piece generates a substantially uniform rotationally integrated average ion current density at each point equidistant from the center of the destination work-piece.
Abstract:
An electron beam lithographic apparatus has an electron gun providing a beam of accelerated electrons, a mask stage adapted to hold a mask in a path of the beam of accelerated electrons, and a workpiece stage adapted to hold a workpiece in a path of electrons that have passed through the mask. The electron gun has a cathode having an electron emission surface, an anode adapted to be connected to a high-voltage power supply to provide an electric field between the cathode and the anode to accelerate electrons emitted from the cathode toward the anode, and a current-density-profile control grid disposed between the anode and the cathode. The current-density-profile control grid is configured to provide an electron gun that produces an electron beam having a non-uniform current density profile. A method of producing a micro-device includes generating a beam of charged particles having a non-uniform charged-particle current density, illuminating a mask with the beam of charged particles, and exposing a workpiece with charged particles from the beam of charged particles.