Abstract:
This invention provides novel methods of fabricating novel gated field emission structures that include aligned nanowire electron emitters (individually or in small groups) localized in central regions within gate apertures. It also provides novel devices using nanoscale emitters for microwave amplifiers, electron-beam lithography, field emission displays and x-ray sources. The new emission structures are particularly useful in the new devices.
Abstract:
An electron emission device includes a substrate, first electrodes formed on the substrate, electron emission regions electrically connected to the first electrodes, and second electrodes placed over the first electrodes such that the second electrodes are insulated from the first electrodes, The second electrodes have a plurality of openings at the crossed areas of the first and the second electrodes to open the electron emission regions, wherein 1.36≦P/D≦1.65, where D indicates the width, or diameter, of the openings of the second electrodes, and P indicates the pitch of the openings of the second electrodes.
Abstract translation:电子发射装置包括基板,形成在基板上的第一电极,与第一电极电连接的电子发射区域和放置在第一电极上的第二电极,使得第二电极与第一电极绝缘。第二电极具有 在第一和第二电极的交叉区域处的多个开口以打开电子发射区域,其中1.36 <= P / D <= 1.65,其中D表示第二电极的开口的宽度或直径,以及 P表示第二电极的开口的间距。
Abstract:
A field emission device (6), in accordance with a preferred embodiment, includes a cathode electrode (61), a gate electrode (64), a separator (62), and a number of emissive units (63) composed of an emissive material. The separator includes an insulating portion (621) and a number of conductive portions (622). The insulating portion of the separator is configured between the cathode electrode and the gate electrode for insulating the cathode electrode from the gate electrode. The emissive units are configured on the separator at positions proximate two sides of the gate electrode. The emissive units are in connection with the cathode electrode via the conductive portions respectively. The emissive units are distributed on the separator adjacent to two sides of the gate electrode, thus promotes an ability of emitting electrons from the emissive material and the emitted electrons to be guided by the gate electrode toward to a smaller spot they bombards.
Abstract:
A triode structure of a field emission display and fabrication method thereof. A plurality of cathode layers arranged in a matrix is formed overlying a dielectric layer. A plurality of emitting layers arranged in a matrix is formed overlying the cathode layers, respectively. A plurality of lengthwise-extending gate lines is formed on the dielectric layer, in which each of the gate layers is disposed between two adjacent columns of the cathode layers.
Abstract:
A field emission electron source includes a substrate, a first conductive electrode terminated to provide electrons, an emitting composite layer for emitting electrons, and a second electrode insulated from the emitter layer and terminated to extract electrons through vacuum space. The emitting composite layer lies between and parallel to the said first and the second electrodes, and comprises nano-structures embedded in a solid matrix. One end of the nano-structures is truncated and exposed at the surface of the emitter layer so that both the length and the apex of the nano-structure are regulated and the exposed nano-tips are kept substantially the same distance from the gate electrode. The embedding material is chosen to form triple junctions with the exposed tip to further enhance the field.
Abstract:
A field emission device (FED) includes an electrostatic lens structure. The FED includes: a rear substrate; a cathode electrode on the upper surface of the rear substrate; at least one group of emitters emitting electron beams and arranged in a vertical row on the upper surface of the cathode electrode; a gate electrode placed on the upper surface of the cathode electrode to extract electrons from the emitters and having horizontal first openings respectively corresponding to the emitters; a first insulating later interposed between the gate electrode and the cathode electrode; a focus electrode placed on the upper surface of the gate electrode and having a vertical second opening portion connected to the first opening portions of the corresponding group of emitters; a second insulating layer interposed between the focus electrode and the gate electrode; a front substrate disposed a predetermined distance above the rear substrate with an anode electrode on the lower surface thereof; and a fluorescent pattern formed on the lower surface of the anode electrode, emitting light when collided of the electron beams; with the gate electrode and the focus electrode forming a quadruple lens structure.
Abstract:
A field emission device having emitter tips and a support layer for a gate electrode is provided. Openings in the support layer and the gate layer are sized to provide mechanical support for the gate electrode. Cavities may be formed and mechanically supported by walls between cavities or columns within a cavity. Dielectric layers having openings of different sizes between the emission tips and the gate electrode can decrease leakage current between emitter tips and the gate layer. The emitter tips may comprise a carbon-based material. The device can be formed using processing operations similar to those used in conventional semiconductor device manufacturing.
Abstract:
To provide an electron-emitting device that can be used to manufacture an image forming apparatus having a superior display quality and in which the development of the abnormal light emission point is suppressed and the unevenness of brightness is not caused. The electron-emitting device includes: a cathode electrode and a gate electrode, which are formed on a base surface and opposed to each other with a space therebetween; and an electron-emitting film which is located on the cathode electrode, and in the electron-emitting device, the electron-emitting film has two end portions (A and B) in a plane substantially parallel to the base surface in a direction substantially perpendicular to a direction along which the cathode electrode and the gate electrode are opposed to each other, and a structure is used in which electric field strengths applied between each of the two end portions (A and B) of the electron-emitting film and the gate electrode are made weaker than an electric field strength applied between a region between the two end portions (A and B) of the electron-emitting film and the gate electrode at a time of driving.
Abstract:
The present invention refers to a field emitter beam source (10) comprising at least one emitter (11); at least one extracting electrode (19) to extract a beam current (IE) from the emitter (11); a current source (12) for providing a predetermined beam current (IE0); a first voltage source (13) for providing a first voltage (UA) between the emitter (11) and the extracting electrode (19) to switch on the beam current (IE); and a first switch (S1) for disconnecting the first voltage source (13). With such a field emitter beam source, the emitter voltage (UE) necessary to emit a predetermined beam current (IE0) can be determined. This in turn enables the field emitter beam source (10) to generate beam current pulses with a fast rise time and a well defined beam current pulse charge Q.
Abstract:
This invention provides a conductive aluminum film and method of forming the same, wherein a non-conductive impurity is incorporated into the aluminum film. In one embodiment, the introduction of nitrogen creates an aluminum nitride subphase which pins down hillocks in the aluminum film to maintain a substantially smooth surface. The film remains substantially hillock-free even after subsequent thermal processing. The aluminum nitride subphase causes only a nominal increase in resistivity (resistivities remain below about 12 μΩ-cm), thereby making the film suitable as an electrically conductive layer for integrated circuit or display devices.