Abstract:
An optical reading head is an optical reader for photoelectric reading of images on a medium, comprising a plural light-emitting optical fibers for transmitting beams of light from light emitting elements to the surface of the medium, and plural light-receiving optical fibers for transmitting beams of reflected light from the medium surface to light-sensitive elements. The ends of the light-emitting and light-receiving optical fibers opposite to the medium surface are positioned in first and second rows, respectively, at a predetermined pitch. The ends of the light-receiving optical fibers are displaced relative to the ends of the light-emitting optical fibers along the first and second rows by a distance equal to a half of the predetermined pitch. Also disclosed is an optical reader comprising the above-described optical reading head, and a control device for controlling the operations of the light emitting elements, so that the resolution of the reading head is variable in two steps.
Abstract:
There is provided a method of manufacturing an image sensor unit, the image sensor unit including: a linear light source that illuminates a document along a main scanning direction; a rod lens array that includes a plurality of rod lenses arranged in the main scanning direction and condenses a light reflected from the document; and a linear image sensor that receives a light condensed by the rod lens array. When a rod lens having an optically discontinuous portion on a surface and/or interior of the rod lens is included, the rod lens array is arranged such that the optically discontinuous portion is not located toward the document.
Abstract:
An image reading apparatus includes a main unit, an openable unit, a cable connected to the openable unit and routed in the main unit, and a holding member attached to the main unit. The holding member includes a first guide portion configured to hold a first specified portion of the cable. The holding member, with the first guide portion holding the first specified portion of the cable, is configured to move from a first position to a second position. When the holding member is in the first position, the cable has no slack in a second specified portion of the cable, the second specified portion being closer to an end of the cable disposed in the openable unit than the first specified portion. When the holding member is in the second position, the cable has slack in a second specified portion of the cable routed in the main unit.
Abstract:
An imaging optical system includes a plurality of lens optical system rows each including a plurality of lens optical systems arranged in a first direction. The plurality of lens optical system rows is arranged in a second direction perpendicular to the first direction and to an optical axis direction. Each of the plurality of lens optical systems in each of the plurality of lens optical system rows is configured to form an erect equal-magnification image in a cross section perpendicular to the second direction and configured to form an inverted image in across section perpendicular to the first direction. Ina cross section perpendicular to the optical axis direction, optical axes of the respective plurality of lens optical systems in adjoining ones of the plurality of lens optical system rows are separate from one another in the first direction and are located on the a line.
Abstract:
A light collecting member includes a lens to make incident light be collected on a light receiving member, a lens barrel to house the lens, an end portion into which a light enters of the lens barrel being arranged near the light receiving member and a fence member to cover the end portion into which a light enters of the lens barrel and the light receiving member, the fence member having an exhaust port formed in a manner extending in a vertical direction.
Abstract:
An optical module 100 includes an optical path unit 101 including a plurality of reflectors 104 for securing an optical path of reflected light from a manuscript, an image processing unit 102 including a reading device 105 which reads image information on the manuscript based on the reflected light from the manuscript entered via the optical path, and a connecting component 103 which connects the optical path unit 101 and the image processing unit 102 so that their positional relation will become a prescribed state.
Abstract:
A modularized light-guiding apparatus and manufacturing method, which may make the light of a light source proceed at least twice light reflections of predetermined directions. The light-guiding apparatus includes a plurality of modularized reflection elements, which may be differentiated to several different types of reflection element. Each type of each reflection element all has substantially same adjoining device and edge size for providing to be adjoined and piled-up with another reflection element. But, the reflection element of different type individually has different number of reflection plane for providing the light to proceed different times of light reflection. It may determined the light reflection times and light-path length for the light-guiding apparatus, by choosing several different types of reflection element among plural reflection elements to proceed the piling-up for the light-guiding apparatus.
Abstract:
An image sensor and a manufacturing method thereof are provided, so that the warp or the distortion is not caused even if there is the thermal expansion difference or the thermal contraction difference in the longitudinal direction between the linear illuminating device and the frame. The image sensor comprises a linear illuminating device for illuminating an original; a light-receiving element array for receiving reflected light from the original; a lens array for focusing the original on the light-receiving element array; a frame for containing the linear illuminating device, the lens array, and the light-receiving element array; and a resilient retaining portion for pressing the linear illuminating device, which is mounted in the frame, into the frame.
Abstract:
An optical carriage of scanner has a mirror assembly and a device assembly, the mirror assembly has a mirror mount, some mirror holder, and some supporters, and the device assembly has a chassis. In this invention, the mirror assembly and the device assembly are mechanically connected after separately formation. Further, to ensure correct shape of these mirror holders and these supporters, they could be formed by metal punch, plastic ejection, or plastic process.
Abstract:
An image copying apparatus includes a scanner for scanning an image of a document and a printer for forming the image, the scanner has a document table for mounting a document to be an image scanning target, and a carriage mounting one of a contact image sensor and a module type reduced optical system thereon and moving in a secondary scanning direction when scanning an image of the document mounted on the document table in the scan of the image, and a series of sensors required for scanning an image in a primary scanning direction and the secondary scanning direction are mounted on the carriage. The image copying apparatus is possible to reduce a man-hour more greatly than that in the conventional art. Therefore, it is possible to contribute to a reduction in a cost and an enhancement in quality.