Abstract:
The present invention relates to a high frequency laminated component, which is used in a high frequency apparatus such as a radio communication apparatus, and its manufacturing method. An object thereof is to downsize the high frequency laminated component. To achieve the object, according to the high frequency laminated component of the present invention, dielectric layer (4) whose dielectric constant is lower than that of other areas is formed around via-hole electrode (3) in a dielectric. By forming dielectric layer (4) having a low dielectric constant, electric interference between via-hole electrode (3) and circuit electrode (22) is restrained, so that the circuit electrode and the via-hole electrode can be formed more closely each other compared with a conventional one. As a result, the high frequency laminated component can be downsized.
Abstract:
The wiring board comprises a plate-shaped conductive core material 10 with a through-hole 12 formed in, an insulation layer 14 formed on the surface of the conductive core material 10 and on the inside wall of the through-hole 12, a resin 18 buried in the through-hole 12 with the insulation layer 14 formed in, wirings 22a, 22b formed on the upper surface and the undersurface of the conductive core material 10 with the insulation layer 14 formed on, and an wiring 22d formed in the through-hole 20 formed in the resin 18 and electrically connected to the wirings 22a, 22b.
Abstract:
The wiring board comprises a plate-shaped conductive core material 10 with a through-hole 12 formed in, an insulation layer 14 formed on the surface of the conductive core material 10 and on the inside wall of the through-hole 12, a resin 18 buried in the through-hole 12 with the insulation layer 14 formed in, wirings 22a, 22b formed on the upper surface and the undersurface of the conductive core material 10 with the insulation layer 14 formed on, and an wiring 22d formed in the through-hole 20 formed in the resin 18 and electrically connected to the wirings 22a, 22b.
Abstract:
Method of producing a multi-layered wiring board comprising the steps of subjecting the photosensitive resin to exposure- and development-treatment to form the holes having a predetermined size and shape; depositing and forming the curable resin to the insulating layer having the holes formed therein in such a manner as to bury the holes, and conducting heat-treatment to form the cured thin film of the curable resin on the surface of the insulating layer; and so removing the curable resin as to leave the cured thin film to obtain the via-holes having the reduced opening size by the cured thin film.
Abstract:
In a multilayer wiring board comprising a core board, and a wiring layer and an electrically insulating layer that are stacked on one surface of said core board, a thermal expansion coefficient of said core board in XY directions falls within a range of 2 to 20 ppm, a core member for said core board is a core member selected from silicon, ceramics, glass, a glass-epoxy composite, and metal, said core board is provided with a plurality of through holes that are made conductive between the front and the back by a conductive material, and a capacitor is provided on one surface of said core board, wherein said capacitor comprises an upper electrode being the conductive material in said through hole, and a lower electrode disposed so as to confront said upper electrode via a dielectric layer.
Abstract:
A green ceramic insert having a green ceramic body provided with a recess extending through the ceramic body is provided, the recess being filled with a paste which may be converted into an electrical plated hole. A ceramic insert made from a sintered green ceramic insert of this type is also described. In addition, a ceramic green body or a green body composite is provided, which has at least one recess in some areas, into which one of the described green ceramic inserts is inserted. The ceramic insert may be integrally joined to the laminated composite, a conductive paste converted by sintering into a printed conductor being routed on the laminated composite in a manner electrically insulated from it, and electroconductively connecting the top of the laminated composite to its bottom via the electrical plated hole.
Abstract:
In manufacturing a double-layered or a multi-layered printed wiring board, a layer of metamorphic substance, which is created by transmuting a substrate material, is formed on an inner wall of a hole during a perforation process of the substrate utilizing radiation energy. The layer of metamorphic substance prevents conductive materials constituting electrical connection means formed on the inner wall of the hole from dispersing over a surface of the substrate or permeating into the substrate.
Abstract:
The present invention relates generally to a new ceramic structure and process thereof. Basically, the present invention relates to a structure and method for forming laminated structures and more particularly to a structure and method for fabricating multi-layer ceramic products using very thin green sheets and/or green sheets with very dense electrically conductive patterns on top of a stronger support sheet. The structure and method of the present invention enables the screening, stacking and handling of very thin green sheets and/or green sheets with very dense metallized patterns in the manufacture of multi-layer ceramic packages. The thin green sheets were tacked/bonded to thicker and stronger support sheets to form a sub-structure which had excellent stability in screening and enabled further processing. The sheets are anchored or pinned in such a way as to allow the processing of the green sheet with the subsequent easy removal of the support sheet.
Abstract:
A protective coating of insulating material is formed around a clearance hole in a conductive layer of a printed circuit board, so that the conductive material in a via within the clearance hole will not contact the conductive layer and create a short circuit. In one embodiment, the protective coating is sufficiently hard to deflect a drill bit being used to drill the via hole, thus protecting against misregistered drilled holes.
Abstract:
A capacitor sheet includes a laminate sheet, interface-connection feedthrough conductors for electrically connecting faces of the laminate sheet, and capacitor-connection feedthrough conductors. The laminate sheet has at least one laminate which is composed of a power source layer electrode, a grounding layer electrode, and a dielectric layer interposed between the power source layer electrode and the grounding layer electrode. The interface-connection feedthrough conductors are formed in through holes that pass through the dielectric layer, the power source layer electrode, and the grounding layer electrode, and are insulated by insulation walls from the power source layer electrode and the grounding layer electrode provided inside. The capacitor-connection feedthrough conductors are formed in regions where only either the power source layer electrode or the grounding layer electrode is provided, and are connected electrically with either the power source layer electrode or the grounding layer electrode. This configuration makes the electric connection for employing the capacitors and the electric connection between faces of the sheet independent from each other. Thus, it is possible to provide a capacitor sheet in which the adverse effects of inductances of vias are minimized.