Abstract:
A flexible circuit comprises a folded dielectric sheet having conductive patterns on its surface(s) to which microelectronic device(s) are attached. The dielectric sheet is folded 180° about a selected axis and a bond layer joins the two halves over a portion of their respective surface areas so that a remaining portion of their areas remain unbonded and a bifurcated structure is thereby formed. Electrical contacts are provided on the unbonded or bifurcated portions of the flexible sheets. The flex may be attached to a rigid frame and provided with protective heat spreading covers. The folded flex design is particularly suitable for reel-to-reel manufacturing.
Abstract:
A method of manufacturing a printed circuit board includes the steps of providing a first layer stack including a first electrically-conductive layer and a first electrically-insulating layer and providing a second layer stack including a second electrically-insulating layer. The first electrically-conductive layer is disposed on the first surface of the first electrically-insulating layer. The second electrically-insulating layer includes one or more electrically-conductive traces disposed on a first surface thereof. The method also includes mounting a device on the first surface of the second electrically-insulating layer such that the device is electrically-coupled to at least one of the one or more electrically-conductive traces, and providing the first layer stack with a cut-out area defining a void that extends from the second surface of the first electrically-insulating layer to the first surface of the first electrically-conductive layer. The cut-out area is configured to receive at least a portion of the device therein.
Abstract:
The present invention discloses a USB application device including a body, a circuit board, a plurality of first electrical pins and a plurality of electrical elements. The circuit board is disposed in the body. The plurality of first electrical pins are disposed on the circuit board and expended to the body such that the plurality of first electrical pins are partly exposed to the body. A space is formed between the plurality of first electrical pins and circuit board such that the plurality of electrical elements can be disposed on the space. The length of the circuit board therefore becomes shorter, and the volume of the USB application device is reduced.
Abstract:
An electronic control unit is disclosed. The electronic control unit includes: a resin board; a power device that is surface-mounted on the resin board; a microcomputer that is configured to control the power device; first heat radiation means for radiating heat, the first heat radiation means being disposed on an opposite side of the resin board from the power device; and first heat conduction means for conducting the heat generated by the power device to the first heat radiation means.
Abstract:
A method of manufacturing is provided that includes placing a thermal management device in thermal contact with a first semiconductor chip of a semiconductor chip device. The semiconductor chip device includes a first substrate coupled to the first semiconductor chip. The first substrate has a first aperture. At least one of the first semiconductor chip and the thermal management device is at least partially positioned in the first aperture.
Abstract:
A multichip module comprises a multilayer substrate circuit having conductive patterns on its surface(s) to which microelectronic device(s) are attached. A part of the substrate is flexible and bifurcated. Two rigid members are attached lengthwise, one on either side of the substrate, and the free ends of the bifurcation are reflexed respectively about these members and bonded to them. Electrodes are located on the bifurcations so that they will be exposed outwardly and/or downwardly after reflexing. The module may further be provided with protective heat spreading covers. The electrodes and rigid members may be configured to engage a mating socket or they may be solderable to a printed circuit board.
Abstract:
Heat from the core of a semiconductor chip package mounted on a printed circuit board assembled into a computer system is dissipated to both sides of the printed circuit board. A pair of integrated heat spreaders are disposed at opposite sides of the core, and two heat sinks are positioned at opposite sides of the package. Each of the heat sinks is positioned in thermal communication with one of the heat spreaders to dissipated heat from the core.
Abstract:
Flexible circuitry is populated with integrated circuitry (ICs) disposed along one or both of its major sides. The populated flexible circuitry is disposed proximal to a rigid substrate to place the integrated circuitry on one or both sides of the substrate with one or two layers of integrated circuitry on one or both sides of the substrate. The rigid substrate exhibits adhesion features that allow more advantageous use of thermoplastic adhesives with concomitant rework advantages and while providing flexibility in meeting dimensional specifications such as those promulgated by JEDEC, for example.
Abstract:
A light source device includes a circuit member, a heat dissipation component, an optical component and light emitting diode assemblies. The circuit member defines spaced through holes. The light emitting diode assemblies have a first side and a second side opposite to the first side. Each light emitting diode assembly passes through a corresponding through hole and is electrically connected to the circuit member. The heat dissipation component contacts the first side, is spaced from the circuit member, and is configured to dissipate heat generated by the light emitting diode assemblies. The optical component contacts the second side, and is configured to distribute light emitted from the light emitting diode assemblies.
Abstract:
A flexible circuit comprises two flexible dielectric sheets having conductive patterns on their surface(s) to which microelectronic device(s) are attached. A bond layer joins the two sheets over a portion of their respective surface areas so that a remaining portion of their areas remain unbonded and a bifurcated structure is thereby formed. Electrical contacts are provided on the unbonded or bifurcated portions of the flexible sheets. The flex may be attached to a rigid frame and provided with protective heat spreading covers.