Abstract:
A process for producing a circuit component having a double-sided circuit device between a pair of substrates. The process entails depositing a solder material on contact areas on surfaces of the substrates, placing a first of the substrates within a cavity in a receptacle, and then placing a lead member on the substrate so that the lead member is supported by the receptacle and a portion of the lead member is aligned with a portion of the contact area of the substrate. A fixture is then placed on the lead member and over the substrate so that the fixture is supported by the receptacle. After aligning the circuit device with the contact area of the remaining substrate, the substrate-device assembly is placed in an aperture in the fixture so that a surface of the device electrically contacts the contact area of the first substrate and the opposite surface of the device electrically contacts the contact area of the second substrate. The resulting fixtured assembly then undergoes reflow.
Abstract:
A printed circuit board (PCB) assembly includes a PCB and a first integrated conductive bus structure extending from a first edge of the PCB. The PCB connects a plurality of electronic components and includes a plurality of conductive layers, each separated by a non-conductive layer. The first integrated conductive bus structure includes a first portion that extends from the first edge of the PCB and which forms a plurality of electrically separate contacts of a connector. A second portion of the bus structure is integrated within the PCB and couples each of the contacts to at least one conductive trace of the PCB through plated holes.
Abstract:
By forming a terminal at a tip of a lead part of a lead frame, and by fixing this terminal and a connecting pad which was formed on an upper surface of a first printed circuit board, the lead frame is attached to the first printed circuit board. By cutting off a frame part and a tie bar part from the lead frame which was attached to the first printed circuit board, the lead part is separated, and forming is applied to the lead part so as for its tip to be extended over the first printed board. After the lead part which is expanded upward is inserted into a through-hole which was opened in a second printed circuit board, by soldering the lead part and the through-hole, the first printed circuit board and the second printed circuit board are electrically connected.
Abstract:
An optical transceiver module having a plurality of optical subassemblies and a printed circuit board is disclosed. The transceiver module includes lead frame connectors for connecting the optical subassemblies to the printed circuit board. The lead frame connectors include a stamped and bent conductive lead structure that is encased in an insert injection molded plastic casing. The plastic casing provides electrical insulation for the conductors in the lead frame as well as mechanical support for the finished component. The lead frame connectors connect to the leads associated with the optical subassemblies and are surface mounted onto the printed circuit board to establish connectivity between the optical subassembly and the printed circuit board. The lead frame assemblies are generally more reliable and less expensive than using flexible printed circuit board structures to establish electrical connectivity between optical subassemblies and transceiver printed circuit boards.
Abstract:
The present invention is to provide a metal-core substrate without mounting large size terminals and connectors. Hence, the metal-core substrate can be smaller and thinner. A metal-core substrate includes a metal plate, an insulating layer formed on a surface of the metal plate and a circuit pattern formed on a surface of the insulating layer, wherein a part of said metal plate is exposed to outside of the insulating layer and is utilized as connector terminals. The metal plate has a heat sink plate to heat sink a heat-generating device mounted on the metal-core substrate and connector terminal plates disposed separately from the heat sink plate and utilized for the connector terminals. The heat-generating device and a driving part thereof each are disposed on a different surface of the metal-core substrate.
Abstract:
An IC module includes a lead frame having terminals that are to be connected to an antenna coil of an IC card, and an IC chip and multilayer chip capacitors for tuning mounted on the lead frame and encapsulated by a resin. The multilayer chip capacitors are mounted in grooves on the lead frame.
Abstract:
Exemplary embodiments of the present invention illustrate lead frame connectors for connecting optical sub-assemblies to printed circuit boards in optical transceiver modules. The lead frame connectors include a stamped and bent conductive lead structure that is encased in a plurality of insert injection molded plastic casings. The plastic casings provide electrical insulation for the conductors in the lead frame as well as mechanical support for the finished component. The lead frame connectors connect to the leads associated with the optical sub-assemblies and are surface mounted onto the printed circuit board to establish connectivity between the optical sub-assembly and the printed circuit board.
Abstract:
An improved multi-chip module includes a main circuit board having an array of electrical interconnection pads to which are mounted a plurality of IC package units. Each IC package unit includes a pair of IC packages, both of which are mounted on opposite sides of a package carrier. The package units may be mounted on one or both sides of the main circuit board. A first primary embodiment of the invention employs a laminar package carrier having a pair of major planar surfaces. Each planar surface incorporates electrical contact pads. One IC package is surface mounted on each major planar surface, by interconnecting the leads of the package with the contact pads on the planar surface, to form the IC package unit. A second primary embodiment of the invention utilizes a carrier substrate, which has a pair of recesses for back-to-back surface mounting of the IC package pair. The two IC packages may be in contact with opposite sides of a heat sink layer embedded within the carrier substrate. Each resulting IC package unit is surface mounted to the main circuit board. A third primary embodiment of the invention incorporates features of both the first and second primary embodiments. One of the packages is mounted on a planar surface of the carrier right side up, while the other package is mounted on the carrier in a recess upside down. Several variants of this embodiment are possible. Either the IC package that is mounted on the planar surface of the carrier, or the IC package that is mounted within the recess, may be mounted adjacent to the main circuit board. In the former case, the adjacent package of the package unit fits within a recess on the main circuit board. In the latter case, the adjacent package of the package unit mounts on a planar surface of the main circuit board. For any of the three primary main embodiments, the carrier may be equipped with its own set of interconnection leads which interface with the interconnection pads on the main circuit board or connection may be made directly between the leads of one package and the interconnection pads of the circuit board.
Abstract:
An operating mechanism (1) includes a housing and a printed circuit board (6) having an electronic switch part disposed in the housing. A punched grid (7) has at least one punched grid plane (8) running parallel to the circuit board (6). The punched grid is electrically connected to the circuit board (6) by means of contact sections (18) bent off from the punched grid plane (8) and connected to electric components (10, 11) that are connected to the circuit board and/or punched grid. The housing has a first housing part (2) with a housing wall (21) running parallel to the circuit board (6) and the punched grid plane (8). First connecting elements (12) are electrically connectable with second contact sections (19) of the punched grid (7), and the second connecting elements (14) are electrically connectable with discrete contact elements arranged on the circuit board (6).
Abstract:
An improved multi-chip module includes a main circuit board having an array of electrical interconnection pads to which are mounted a plurality of IC package units. Each IC package unit includes a pair of IC packages, both of which are mounted on opposite sides of a package carrier. The package units may be mounted on one or both sides of the main circuit board. A first primary embodiment of the invention employs a laminar package carrier having a pair of major planar surfaces. Each planar surface incorporates electrical contact pads. One IC package is surface mounted on each major planar surface, by interconnecting the leads of the package with the contact pads on the planar surface, to form the IC package unit. A second primary embodiment of the invention utilizes a carrier substrate which has a pair of recesses for back-to-back surface mounting of the IC package pair. The two IC packages may be in contact with opposite sides of a heat sink layer embedded within the carrier substrate. Each resulting IC package unit is surface mounted to the main circuit board. A third primary embodiment of the invention incorporates features of both the first and second primary embodiments. One of the packages is mounted on a planar surface of the carrier right-side up, while the other package is mounted on the carrier in a recess upside down. Several variants of this embodiment are possible. Either the IC package that is mounted on the planar surface of the carrier, or the IC package that is mounted within the recess, may be mounted adjacent to the main circuit board. In the former case, the adjacent package of the package unit fits within a recess on the main circuit board. In the latter case, the adjacent package of the package unit mounts on a planar surface of the main circuit board. For any of the three primary main embodiments, the carrier may be equipped with its own set of interconnection leads which interface with the interconnection pads on the main circuit board or connection may be made directly between the leads of one package and the interconnection pads of the circuit board.