Abstract:
Sorbents for removal of mercury and other pollutants from gas streams, such as a flue gas stream from coal-fired utility plants, and methods for their manufacture and use are disclosed. Embodiments include brominated sorbent substrate particles having a carbon content of less than about 10%. Other embodiments include one or more oxidatively active halides of a nonoxidative metal dispersed on sorbent substrate particles mixed with activated carbon in an amount up to 30% by weight.
Abstract:
A supported Lewis acid catalyst, which comprises an inorganic oxide substrate having immobilized thereon at least one Lewis acid and a modifying agent containing at least one functional moiety capable of reacting with surface hydroxyl groups originally present on said substrate and which is effective as a catalyst for hydrocarbon conversion reactions including cationic polymerization, alkylation, isomerization and cracking reactions is disclosed.
Abstract:
The present invention relates to a process for the reduction dechlorination of ClCF.sub.2 CFClCF.sub.2 Cl to HCF.sub.2 CHFCF.sub.2 H comprising the step of contacting 1,2,3-trichloropentafluoroethane and H.sub.2 over a catalyst selected from the group consisting of palladium, platinum, ruthinium, rhodium, iridium and mixtures thereof under reaction conditions sufficent to produce a product stream containing 1,1,2,3,3-pentafluoropropane. The present invention further relates to a three step process wherein the ClCF.sub.2 CFClCF.sub.2 Cl to be reduced is synthesized by:(a) reacting HF with a compound of formula I: XCH.dbd.CYCH.sub.2 X, where X is H, Cl, or F, Y is H or Cl;to give a compound of formula II: CH.sub.2 XCFYCH.sub.2 X, where X and Y are the same as in the compound of formula I:(b) chlorinating the compound of formula II to give a compound of formula III: CCl.sub.3-m F.sub.m CFClCCl.sub.3-m F.sub.m where m is zero or 1, and(c) fluorinating the compound of formula III to give CClF.sub.2 CFClCF.sub.2 Cl.A composition of matter having the formula HCF.sub.2 CHFCF.sub.2 Cl is also disclosed.
Abstract:
A supported Lewis acid catalyst, which comprises an inorganic oxide substrate having immobilized thereon at least one Lewis acid and a modifying agent containing at least one functional moiety capable of reacting with surface hydroxyl groups originally present on said substrate and which is effective as a catalyst for hydrocarbon conversion reactions including cationic polymerization, alkylation, isomerization and cracking reactions is disclosed.
Abstract:
A process of contacting a feedstream containing dioxygen, carbon monoxide, ether, and alkanol, which can be vaporized under conditions of reaction, with a blend of catalysts which are heterogeneous to the feedstream, under conditions of reaction sufficient to form a mixture containing at least one higher molecular weight oxygenated organic compound is described. In another aspect, this invention relates to a blend of catalysts consisting of at least one molecular sieve, natural or synthetic, which has been found useful for hydrocarbon conversion reactions and a catalyst comprising a metal halide or a mixed metal halide supported on active carbon, which is effective in catalyzing direct formation of organic carbonates.
Abstract:
A catalytic composite of a refractory inorganic oxide whose bound surface hydroxyl group has reacted with a Friedel-Crafts type metal halide and whose acidity has been modified by the deposition of a monovalent metal cation, especially an alkali metal cation, or alkaline earth metal cation shows superior selectivity and a significantly decreased cracking tendency relative to similar catalysts without the monovalent metal or alkaline earth metal cation. The resulting alkylate from an isobutane-butene feedstock shows a substantial increase in research octane number relative to the alkylate formed by a similar catalyst which has not been so modified by an alkali or alkaline earth metal cation.
Abstract:
A process for the alkylation of aromatic compounds with an olefin, alcohol, or alkyl halide having from 1 to 24 carbon atoms comprising reacting in the liquid phase the aromatic and alkylating agent under alkylation conditions in the presence of a novel catalyst comprising: a) a refractory inorganic oxide, b) the reaction product of a first metal halide and bound surface hydroxyl groups of the refractory inorganic oxide, c) a second metal cation, and d) optionally a zerovalent third metal. The refractory inorganic oxide is selected from the group consisting of alumina, titania, zirconia, chromia, silica, boria, silica-alumina, and combinations thereof and the first metal halide is a fluoride, chloride, or bromide of aluminum. The second metal cation is selected from the group consisting of: monovalent metal cations in an amount from 0.0026 up to about 0.20 gram atoms per 100 grams refractory inorganic oxide for lithium, potassium, cerium, rubidium, silver, and copper, and from 0.009 to about 0.20 gram atoms for sodium; and alkaline earth metal cations in an mount from about 0.0013 up to about 0.01 gram atoms per 100 grams of refractory inorganic oxide for beryllium; strontium, and barium; and in an amount from about 0.004 up to about 0.1 gram atoms per 100 grams support for magnesium and calcium, or combinations thereof. The third metal is selected from the group consisting of platinum, palladium, nickel ruthenium, rhodium, osmium and iridium, and any combination thereof.
Abstract:
Alkylhydrogenchlorosilanes of formula I:R.sub.x HSiCl.sub.y (I)wherein R are identical or different alkyl radicals, x is 1 or 2 and y is 1 or 2 and the sum of x and y is equal to 3, are prepared by comproportionating alkylchlorosilanes of formula II:R.sub.a SiCl.sub.n (II)wherein R denotes identical or different alkyl radicals, a is 1 or 2 and n is 2 or 3 and the sum of a and n is equal to 4 with hydrogenchlorosilanes of formula III:R.sub.b H.sub.c SiCl.sub.4-b-c (III)wherein R denotes identical or different alkyl radicals, b is 0, 1, 2 or 3 and c is 1, 2, 3 or 4 and the sum of b and c is equal to or smaller than 4, in the presence of a catalyst saturated with a hydrogen halide.
Abstract:
A supported Lewis acid catalyst system for catalyzing hydrocarbon conversion reactions including cationic polymerization, alkylation, isomerization and cracking reactions is disclosed, wherein the catalyst system comprises an inorganic oxide support having immobilized thereon at least one relatively strong Lewis acid and at least one relatively weak Lewis acid.
Abstract:
A novel alkylation catalyst is described which is used in processes for alkylating olefin hydrocarbons with isoparaffin hydrocarbons to produce high octane alkylate products suitable for use as blending components of gasoline motor fuel. The novel catalyst comprises a mixture of a hydrogen halide, a sulfone and water and has suitable corrosion properties which permit its utilization in alkylation process systems. The novel alkylation catalyst is utilized in a novel process for alkylating olefin hydrocarbons with isoparaffin hydrocarbons.