Abstract:
An optical wireless communication receiver comprises a dielectric totally internally reflecting concentrator (DTIRC) (1) having a convexly curved receiving surface (2) for receiving incident radiation over a wide field-of-view and a concavely curved side surface (3) from which radiation passing through the receiving surface is totally internally reflected towards a detection surface (4). A narrowband optical filter (6) is provided for filtering the radiation before it reaches the detection surface (4), and a photodetector serves to detect the radiation reaching the detection surface (4) and to provide an electrical output signal indicative of the radiation detected. Such an arrangement offer higher concentration and allows the use of small photodetectors which reduces the capacitance and the cost and improves receiver sensitivity.
Abstract:
An optical power measuring apparatus for successively measuring optical power in a time series and displaying a time axis change of the measurement values as a measurement screen fixedly displays the latest measurement value of optical power on the measurement screen, and improves a working factor of an optical axis adjustment.
Abstract:
A method and system for measuring the temporal response of a micromirror array to a variety of driving signals. A micromirror array is illuminated with a coherent light source so that a diffraction pattern is reflected from the micromirror array. One or more photodetectors are aligned with spots of light in the diffraction pattern that correspond to orders of the diffraction pattern. Diffraction pattern theory predicts that the intensity of these spots of light will vary as the tilt angle of the micromirrors is changed. Thus, by measuring the relative intensity of the spots of light as the micromirror array is provided with a variety of driving signals, many performance characteristics of the micromirror array can be measured. Some of these characteristics include the impulse response, the forced resonant frequency (i.e. the natural frequency), the damped resonant frequency, the quality factor of the micromirror response, the damping factor of the micromirror response, and the frequency transfer function. According to another aspect of the invention, the electromechanical compliance of the micromirrors in the micromirror array can also be measured. It is further contemplated that all of these measurements can be localized to specific regions on the surface of the micromirror array so that the variance of different characteristics across its surface can be analyzed. Another aspect of the disclosed invention is the measurement of the tilt angle of the micromirror array at a non-biased state.
Abstract:
An optical power control system is provided that may be used in connection with an optical transmitter, receiver or transceiver module. The optical power control system comprises: (1) an array of optoelectronic devices; (2) an array of optical elements; (3) the array of optical elements optically aligned to the array of optoelectronic devices in such a manner that one or more optical elements is optically aligned to one or more optoelectronic devices; (4) a light-receiving device; and (5) a reflector proximate to the array of optical elements, the reflector optically orientated with the array of optoelectronic devices and the light-receiving device such that some emission from at least one optoelectronic device is reflected on at least a portion of the light-receiving device. The optical elements may be optical fibers and may be packaged in a ferrule. The light-receiving device may be a photo-detector or a light pipe. A feedback loop connects the light-receiving device to the array of optoelectronic devices so as to adjust the output of the array of optoelectronic devices in response to the emission detected by the light-receiving device. The reflector scatters the emission from the optoelectronic device, and it may be adapted to a bottom surface of a ferrule. In another embodiment, optical resin is dispensed proximate to the array of optoelectronic devices and light-receiving device. Emission from at least one optoelectronic device is reflected onto the light-receiving device by the optical resin.
Abstract:
A position measuring system that includes a graduation support having a first detent and a detector arrangement on a holder for scanning the graduation support at a preset scanning distance. An adjusting device that sets the preset scanning distance, the adjusting device is displaceable relative to the holder along a first direction from a mounting position to an operating position. The adjusting device includes a second detent which, in the mounting position, acts together with the first detent of said graduation support acting in the first direction, and the first and second detents are out of engagement at the operating position and a receiver which, at the mounting position, maintains the graduation support oriented perpendicularly with respect to the first direction, and the receiver is removed from the graduation support by being displaced in the first direction. A coupling element that couples the adjusting device free of play with the holder at least in a second direction perpendicular with respect to the first direction.
Abstract:
A position and color detection sensor (for detecting a position of a light spot in a light distribution that can include stray light components, e.g. from other lasers, ambient lighting etc.) includes two discrete response position sensitive detectors (DRPSDs). The first DRPSD is used to calculate a raw estimate of the spot position and the second DRPSD is used to calculate the actual spot position based on information from the first DRPSD. Color is supported by further dividing each pixel of the first DRPSD into elementary photocells, each one covered with an appropriate optical filter. The use of two DRPSDs differing in pixel geometries makes them suitable for integration on the same chip using the same process. This reduces production and alignment costs. Further, analogue microelectronic processes can be used for color filter deposition and simple optics can be used for beam splitting and shaping.
Abstract:
Described are preferred devices and systems useful in the non-destructive detection of predetermined substances, such as plastique explosives, in objects under interrogation. The devices and systems are readily constructed and can be manufactured as self-contained, portable detection devices.
Abstract:
The invention provides a technique for correcting gamma ray intensities detected to account for variation in attenuation effects with energy. The corrected intensity values enable more accurate isotopic analysis to be conducted and render such techniques applicable to low level emission cases. The technique is particularly useful in investigate waste materials with a gamma emitting content which needs to be determined. The attenuation is corrected for using a bi- modal function to account for the attenuation effects arising from low and high atomic mass components of the material in which the emitters are present.
Abstract:
A high resolution spectral measurement device. A preferred embodiment presents an extremely narrow slit function in the ultraviolet range and is very useful for measuring bandwidth of narrow-band excimer lasers used for integrated circuit lithography. Light from the laser is focused into a diffuser and the diffused light exiting the diffuser illuminates an etalon. A portion of its light exiting the etalon is collected and directed into a slit positioned at a fringe pattern of the etalon. Light passing through the slit is collimated and the collimated light illuminates a grating positioned in an approximately Littrow configuration which disburses the light according to wavelength. A portion of the dispursed light representing the wavelength corresponding to the selected etalon fringe is passed through a second slit and monitored by a light detector. When the etalon and the grating are tuned to the same precise wavelength a slit function is defined which is extremely narrow such as about 0.034 pm (FWHM) and about 0.091 pm (95 percent integral). The bandwidth of a laser beam can be measured very accurately by a directing portion of the laser beam into the insulator and scanning the laser wavelength over a range which includes the monochromator slit wavelength. In a second embodiment the second slit and the light detector is replaced by a photodiod array and the bandwidth of a laser beam is determined by analyzing a set of scan data from the photodiode array. Alternately, the laser wavelength can be fixed near the middle of the spectrum range of the grating spectrometer, and the etalon can be scanned.
Abstract:
A strain sensor has a fiber Bragg grating fastened in a one-quarter circular arc to the strain sensing section of a strain sensor member. One end of the fiber Bragg grating is aligned in the longitudinal direction of the strain sensing section, while the other end is aligned at a right angle to the longitudinal direction. When longitudinal stress is applied, the fiber Bragg grating is elongated at one end and compressed at the other end, creating a high degree of chirp, thereby enabling strain to be measured with high sensitivity. The sensitivity is determined partly by Poisson's ratio, and thus is not limited by geometrical constraints on the strain sensing section.