Pincer mount cathode
    26.
    发明授权

    公开(公告)号:US12027340B2

    公开(公告)日:2024-07-02

    申请号:US18510302

    申请日:2023-11-15

    CPC classification number: H01J1/18 H01J1/146 H01J1/88 H01J9/08 H01J2201/2889

    Abstract: A cathode device includes an emitter tip for generating electrons. An elongate heater is included having proximal and distal ends. The emitter tip can be located at the distal end of the heater. Two spaced apart legs can extend away from the distal end of the heater, terminating at the proximal end and forming an elongate slot therebetween. Two electrical contacts can compressively engage respective opposite outer surfaces of the two legs at the proximal end of the heater to mechanically secure and electrically connect the two legs of the heater to respective electrical contacts at a junction that is at a location spaced away from the emitter tip to keep the junction cooler.

    Pincer Mount Cathode
    27.
    发明公开

    公开(公告)号:US20240161994A1

    公开(公告)日:2024-05-16

    申请号:US18510302

    申请日:2023-11-15

    CPC classification number: H01J1/18 H01J1/146 H01J1/88 H01J2201/2889

    Abstract: A cathode device includes an emitter tip for generating electrons. An elongate heater is included having proximal and distal ends. The emitter tip can be located at the distal end of the heater. Two spaced apart legs can extend away from the distal end of the heater, terminating at the proximal end and forming an elongate slot therebetween. Two electrical contacts can compressively engage respective opposite outer surfaces of the two legs at the proximal end of the heater to mechanically secure and electrically connect the two legs of the heater to respective electrical contacts at a junction that is at a location spaced away from the emitter tip to keep the junction cooler.

    THERMIONIC EMISSION DEVICE AND METHOD FOR MAKING THE SAME

    公开(公告)号:US20210217572A1

    公开(公告)日:2021-07-15

    申请号:US17067734

    申请日:2020-10-11

    Abstract: A thermionic emission device comprises a first electrode, a second electrode, a single carbon nanotube, an insulating layer and a gate electrode. The gate electrode is located on a first surface of the insulating layer. The first electrode and the second electrode are located on a second surface of the insulating layer and spaced apart from each other. The carbon nanotube comprises a first end, a second end opposite to the first end, and a middle portion located between the first end and the second end. The first end of the carbon nanotube is electrically connected to the first electrode, and the second end of the carbon nanotube is electrically connected to the second electrode.

    Thermal-field type electron source composed of transition metal carbide material with artificial facet
    30.
    发明授权
    Thermal-field type electron source composed of transition metal carbide material with artificial facet 有权
    由过渡金属碳化物材料与人造面组成的热场型电子源

    公开(公告)号:US09240301B1

    公开(公告)日:2016-01-19

    申请号:US13851732

    申请日:2013-03-27

    Abstract: An electron source is made from mixed-metal carbide materials of high refractory nature. Producing field-enhanced thermionic emission, i.e., thermal-field or extended Schottky emission, from these materials entails the use of a certain low work function crystallographic direction, such as, for example, (100), (210), and (310). These materials do not naturally facet because of their refractory nature. The disclosed electron source made from transition metal carbide material is especially useful when installed in a scanning electron microscope (SEM) performing advanced imaging applications that require a high brightness, high beam current source.

    Abstract translation: 电子源由具有高耐火性质的混合金属碳化物材料制成。 从这些材料产生场强增强的热离子发射,即热场或延伸的肖特基发射需要使用某种低功函数的晶体学方向,例如(100),(210)和(310) 。 这些材料由于其耐火性质而不自然而然。 所披露的由过渡金属碳化物材料制成的电子源在安装在需要高亮度,远光束电流源的先进成像应用的扫描电子显微镜(SEM)中是特别有用的。

Patent Agency Ranking