Abstract:
An apparatus for examining spectral characteristics of an object may include a chuck configured to support and releasably fix the object, wherein the chuck is larger than the object, a first light source assembly integral with the chuck and configured to illuminate a bottom surface of the object with light having a predetermined spectrum and intensity, and a transmission analysis unit for collecting and analyzing light transmitted through the object. The first light source assembly may include multiple and/or adjustable light sources. A second light source assembly may illuminate a top surface of the object, and a reflection analysis unit may collect resultant reflected light.
Abstract:
A device for generating light pulses that are separated in terms of time has a light source that emits a sequence of light pulses. A regulation signal is formed within a regulation circuit from a cycle signal and the light pulse sequence of the light sources via a phase detector. The regulation circuit includes a regulator that generates a setting signal that influences the repeat frequency of the light pulse sequence of the light source.
Abstract:
Multimodal optical spectroscopy systems and methods produce a spectroscopic event to obtain spectroscopic response data from biological tissue and compare the response data with preset criteria configured to correlate the measured response data and the most probable attributes of the tissue, thus facilitating classification of the tissue based on those attributes for subsequent biopsy or remedial measures as necessary.
Abstract:
In one embodiment, the invention is a spectrophotometer with a modular 45/0 head. One embodiment of an apparatus for measuring a reflectance of a sample includes a plurality of light emitting diodes for emitting light, a reflective housing positioned above the plurality of light emitting diodes, where the reflective housing is a dome having a plurality of apertures formed around its perimeter, a sample channel for capturing a first portion of the light, where the first portion of the light interacts with the sample, and a reference channel for capturing a second portion of the light, where the second portion of the light is independent of the sample.
Abstract:
Methods and systems for real-time monitoring of optical signals from arrays of signal sources, and particularly optical signal sources that have spectrally different signal components. Systems include signal source arrays in optical communication with optical trains that direct excitation radiation to and emitted signals from such arrays and image the signals onto detector arrays, from which such signals may be subjected to additional processing.
Abstract:
The LED-radiance source is a suitable replacement of lamp-based integrating sphere sources where they are used as stable and uniform radiance sources. The LED-based radiance source includes an array of LEDs having substantially similar radiance output wavelengths and a radiation detector such as a photodiode that detects and monitors radiation directed from the LEDs. Temperature of the LEDs can be controlled by feedback from a photodiode, thereby allowing for control and stabilization of temperature-dependent radiation output.
Abstract:
Methods for generating a customized spectral profile, which can be used to generate a corresponding filter, lamp or other type of illuminant. A trial spectrum is generated. A reference spectrum is determined or otherwise obtained. A SOURCE spectrum is determined or otherwise obtained. One or more optical indices are calculated using the trial spectrum and one or more of the optical indices are optimized by varying the trial spectrum to generate the customized spectral profile. A radiation force parameter can be used to minimize unsafe build-up of light in spectral regions. Adaptations of color rendering parameters can be used in the optimization process. Smoothing parameters can be used to enable easier design of filter structures. A reflectance camera can be used to measure reflectance data at one or more pixels of a digital representation of an object to be illuminated.
Abstract:
An optical characteristic measuring apparatus includes: a light source section which sweeps wavelengths of a first input light and a second input light respectively, frequencies of the first and second input lights being different from each other and polarized states of the first and second input lights being perpendicular to each other, and outputs the first and second input light; an interference section which inputs one branched light of the first and second input lights to a measuring object, makes output light from the measuring object interfere with other branched light of the first and second input lights, and outputs a plurality of interference lights; a plurality of light receiving sections which are respectively provided for the interference lights, receives the interference lights respectively, and outputs signals in accordance with optical powers of the interference lights respectively; and a low-pass filter for filtering the outputted signals.
Abstract:
A system and method for fluorescence excitation and detection having distinct optical paths is disclosed. A system for detecting fluorescence comprises a light source that emits an excitation light into an illumination tube; a plurality of collection optics located around an aperture in the illumination tube for collecting fluorescence; and a detector for determining the amount of fluorescence. A method for detecting fluorescence comprises emitting an excitation light from a light source into an illumination tube; directing the excitation light to an excitation filter; illuminating a sample with the excitation light to generate an emission light; and detecting the optical characteristics of the emission light using a plurality of collection optics located around the illumination tube.
Abstract:
A method for providing an intensity or brightness measurement using a digital image-capturing device comprising: selecting a target area within a field of view of the image-capturing device, the target area containing pixels; measuring the intensity or brightness of pixels in a target area; accumulating the intensity or brightness values of the pixels in the target area; and determining a pixel value representative of the intensity or brightness of the pixels in the target area. A device for making color measurements comprising an image-capture device, a processor or logic device, and a memory location for accumulating color data, and the processor or logic device is programmed to perform color measurements by accumulating the data for pixels located in the target area in memory, and determining a representative color value.