Abstract:
An exchange membrane unit includes a first separation membrane, a first space that is connected to a second space via the first separation membrane, a first path that supplies a first fluid (carrier gas) to the first space and supplies chemical substances, which have passed through the first separation membrane from the second space into the first space and diffused, to an ion detector using the first fluid discharged from the first space, and a first ionizing unit provided in the first space. It is possible to provide a preprocessing system that produces little pollution and enables an ion detector to operate with high sensitivity. The present invention can be applied to FAIMS.
Abstract:
A system for measuring a concentration of a component included in a body fluid includes: an apparatus that acquires data including spectra in a time series obtained by irradiating at least part of the body fluid in a flowing state with laser light; and an analyzer apparatus that analyzes analysis target spectrum included in the acquired data based on an analysis reference spectrum that is highly similar to the analysis target spectrum, out of a plurality of reference spectra that primarily reflect one out of a plurality of principal components of the body fluid, and determines the concentration of a target component in the body fluid.
Abstract:
There is provided a gas analyzer apparatus that analyzes inflowing sample gas. The gas analyzer apparatus includes a filter unit that filters the sample gas, a detector unit that detects the result of filtering, a housing that houses these elements, and a control unit that controls the respective potentials of these elements. The control unit includes a cleaning control unit that sets the respective potentials of the filter unit, the detector unit, and the housing to cleaning potentials that draws in, as plasma for cleaning purposes, process plasma from a source that supplies the sample gas or plasma generated by a plasma generation unit.
Abstract:
A system includes a laser module that includes a first laser source configured to generate a narrowband first source laser light; and a plurality of routes configured by optical fibers without using a free space. The plurality of routes includes: a first route for splitting the first source light pulses for generating Stokes light pulses and pump light pulses; a second route for amplifying and broadening a range of wavelengths with a first train including a first amplifier, a first HCPCF, and HNLPCF spliced to supply the Stokes light pulses; and a third route for amplifying with a second train including a second amplifier and a second HCPCF spliced to supply the pump light pulses.
Abstract:
A system includes an optical module for supplying a Stokes light, a pump light and a probe light for generating a CARS light. The optical module includes a fiber laser module and an optical plate. The fiber laser module includes an oscillator, a generator, a first amplifier, a second amplifier and a LD power distributor that is configured to distribute a laser power from a first laser diode to the oscillator as an oscillation source, to the generator as a pump power, to the first preamplifier as a pump power and to the second preamplifier as a pump power.
Abstract:
A plasma generating device includes: a chamber which is equipped with a dielectric wall structure and into which sample gas to be measured flows; an RF supplying mechanism that generates plasma inside the chamber using an electric field and/or a magnetic field through the dielectric wall structure; and a floating potential supplying mechanism that includes a first electrode disposed along an inner surface of the chamber. The RF supplying mechanism may include an RF field forming unit disposed in a first direction with respect to the chamber and the first electrode may include an electrode disposed in a second direction with respect to the chamber.
Abstract:
An optical system comprises a first optical path configured to supply a first light with a first range of wavelengths; a second optical path configured to supply a second light with a second range of wavelengths shorter than the first range of wavelengths; a third optical path configured to supply a third light with a third range of wavelengths shorter than the second range of wavelengths; an optical I/O unit configured to emit the first light, the second light and the third light to a target and acquire a light from the target; a reference unit configured to split off a reference light from the third light; and a detector that includes a range of detection wavelengths shared with a CARS light and an interference light.
Abstract:
A system including a signal obtaining module and a controller is provided. The signal obtaining module includes: a receiver to which an emission light generated in the target by an excitation light is input; a receiving optical path that guides the emission light and a residual light, which is at least a part of the excitation light propagated forward, coaxially between the target and the receiver; a separator that separates the residual light from the receiving optical path to be routed to an image sensor; and an actuator for controlling an optical relative position between the target and the receiver. The controller includes a module that controls the actuator to maintain an optical alignment.
Abstract:
There is provided a gas analyzer apparatus including: a sample chamber which is equipped with a dielectric wall structure and into which only sample gas to be measured is introduced; a plasma generation mechanism that generates plasma inside the sample chamber, which has been depressurized, using an electric field and/or a magnetic field applied through the dielectric wall structure; and an analyzer unit that analyzes the sample gas via the generated plasma. By doing so, it is possible to provide a gas analyzer apparatus capable of accurately analyzing sample gases, even those including corrosive gas, over a long period of time.
Abstract:
An analyzer apparatus (1) includes: an ionization unit (11) that ionizes molecules to analyze; a filter unit (13) that forms a field for selectively passing ions generated by the ionization unit; a detector unit (14) that detects ions that have passed through the filter unit; an ion drive circuitry (61) that electrically drives the ionization unit; a field drive circuitry (62) that electrically drives the filter unit; and a control unit (22) that controls outputs of the ion drive circuitry and the field drive circuitry, wherein the control unit controls the ion drive circuitry to ramp up and down a filament voltage supplied to a filament of the ionization unit when the analyzer apparatus starts and stops.