Abstract:
A method of fabricating a semiconductor laser includes successively epitaxially growing on a first conductivity type semiconductor substrate, a first conductivity type lower cladding layer, an active layer, a second conductivity type first upper cladding layer having a relatively high etching rate in an etchant, a second conductivity type etch stopping layer having a relatively low etching rate in the etchant, a second conductivity type second upper cladding layer, and a second conductivity type first contact layer; forming a stripe-shaped mask on the first contact layer; removing portions of the first contact layer and the second upper cladding layer in a first wet etching step to expose the etch stopping layer; removing portions of the second upper cladding layer in a second wet etching step to form a stripe-shaped ridge structure having a reverse mesa cross section without an intermediate construction; growing a first conductivity type current blocking layer contacting both sides of the ridge structure; and after removal of the mask, growing a second conductivity type second contact layer on the current blocking layer and on the first contact layer. The angle between the side wall of the ridge and the etch stopping layer is an acute angle so the stripe-shaped ridge structure has a perfect reverse mesa cross section and is narrowest proximate the active layer.
Abstract:
A single-stage dielectric band elimination filter has a dielectric block with its outer surfaces mostly covered by an outer conductor and two mutually coupled resonant lines formed therein. Each resonant line has an open end insulated from the outer conductor and a shorted end connected thereto, the open and shorted ends of the two resonant lines being oppositely oriented. A multi-stage dielectric filter has a plurality of such single-stage band elimination filters formed inside a dielectric block, each mutually adjacent pair of the single-stage band elimination filters being interdigitally coupled or combline-coupled to each other with phase shift of II/2 therebetween. The open end of a resonant line may be formed at one of the end surfaces of the dielectric block, being connected to an electrode insulated from the outer conductor, or at an annular conductor-free area formed on the inner surface of the corresponding throughhole. The resonant lines for forming the plurality of single-stage band elimination filters may be arranged horizontally or vertically with respect to each other. Screening electrodes may be inserted between mutually adjacent resonant lines.
Abstract:
In a semiconductor laser module wherein a semiconductor laser chip having a light emitting facet and an optical fiber having a fiber facet are mounted on a module substrate so that the light emitting facet faces the fiber facet, the semiconductor laser chip includes semiconductor layers disposed on a semiconductor substrate and including a light emitting region, and the semiconductor substrate has a portion protruding beyond the light emitting facet. The optical fiber includes a core extending in the optical waveguide direction and a cladding part surrounding the core. In this module, positioning of the optical fiber in the optical axis direction is performed by abutting a portion of the cladding part at the fiber facet against the protruding portion of the substrate of the semiconductor laser chip. Therefore, alignment of the optical fiber with the laser chip in the optical axis direction is performed easily and accurately with a desired spacing between them, without contacting the light emitting facet of the laser chip to the fiber facet, whereby coupling efficiency between the laser chip and the optical fiber is significantly improved.
Abstract:
A method of fabricating an integrated semiconductor laser device includes preparing a polygonal heat sink having side surfaces, and die-bonding semiconductor laser chips to the side surfaces of the heat sink. Therefore, the semiconductor laser chips are accurately arranged at such positions that laser beams emitted from these laser chips are parallel to each other and partially overlap each other. In addition, the semiconductor laser chips are integrated without unwanted contact of a conductive material used for the die-bonding to an active layer exposed at a facet of each laser chip. Further, since the complicated process of die-bonding a laser chip on another laser chip is dispensed with, the fabricating method is easily automated.
Abstract:
A method for fabricating a semiconductor laser includes forming a double heterojunction structure on a first conductivity type semiconductor substrate; forming the double heterojunction structure into a stripe mesa shape by selective etching; successively growing a first conductivity type layer, a second conductivity type current blocking layer, and a first conductivity type current blocking layer on opposite sides of the mesa to embed the mesa; and adding an impurity from a surface of the first conductivity type current blocking layer to form impurity doped regions that electrically separate the second conductivity type current blocking layer from an upper part of the mesa at opposite sides of the mesa.
Abstract:
A dielectric resonant component includes at least one dielectric multistage resonator including one dielectric block, a plurality of inner conductor formation holes formed in the one dielectric block, an inner conductor formed on an inner surface of each of the inner conductor formation holes, and an outer conductor covering a substantially entire outer surface of the one dielectric block, the dielectric multistage resonator constituting a plurality of dielectric resonators in the one dielectric block; and a mount substrate fixedly mounted on the dielectric multistage resonator, for transmitting a signal transmission between each of the dielectric resonators of the dielectric multistage resonator and an external circuit board, when the dielectric resonant component is mounted on the external circuit board. The dielectric multistage resonator further includes a pair of input/output electrodes, and the mount substrate includes a unit for connecting the input/output electrodes of the dielectric multistage resonator to a pair of input/output electrodes formed on the circuit board.
Abstract:
A compact dielectric resonator apparatus is comprised of a dielectric block having a plurality of mutually parallel throughholes formed therethrough with inner surfaces covered with a conductive film so as to provide coaxial resonators. The degree of coupling between a mutually adjacent pair of such dielectric resonators can be adjusted by forming grooves, a bottomed hole or a slit or burying a conductive plate therebetween in the dielectric block, and varying physical characteristics of such grooves, bottomed hole, slit and/or conductive plate, without changing the separations between the throughholes or the external dimensions of the dielectric block.
Abstract:
A semiconductor laser device element substrate includes a plurality of semiconductor laser device elements arranged in an array on a semiconductor substrate, the array including a plurality of rows and a plurality of columns, laser resonator facets being located at the boundaries between respective rows of the semiconductor laser device elements, and element separation guiding grooves, for guiding separation of the substrate into a plurality of divided semiconductor laser devices, the grooves being located at the boundaries between the semiconductor laser device elements of the respective columns, wherein the element separation guiding grooves are arranged at positions on different straight lines running in the column direction for each group at least two adjacent rows. Therefore, even if some forces are applied to the substrate, the forces are not concentrated on a point, whereby wafer cracking can be prevented.
Abstract:
In a method for producing a semiconductor device, a first semiconductor layer is epitaxially grown on a semiconductor substrate, an insulating film pattern is formed on the first semiconductor layer, and portions of the first semiconductor layer are removed by wet etching using the insulating film pattern as a mask to leave a ridge having a reverse mesa shape and a width. Ends of the insulating film pattern are removed by etching to approximately the width of the ridge, a second semiconductor layer is epitaxially grown on opposite sides of the ridge, and a third semiconductor layer is epitaxially grown on the ridge and the second semiconductor layer. The second semiconductor layer is evenly grown without concave portions at opposite sides of the ridge. In addition, the third semiconductor layer is evenly grown on the ridge and the second semiconductor layer, and an electrode reliably connects the surface of the third semiconductor layer. A semiconductor device with good performance and high reliability is reproducibly manufactured.
Abstract:
A back-surface-incidence semiconductor light element includes: a semiconductor substrate of a first conductivity type; a first semiconductor layer of a first conductivity type on the semiconductor substrate; a light absorbing layer on the first semiconductor layer; a second semiconductor layer on the light absorbing layer; and an impurity diffusion region of a second conductivity type in a portion of the second semiconductor layer. A region including a p-n junction between the first semiconductor layer and the impurity diffusion region, and extending through the light absorbing layer, is a light detecting portion that detects light incident on a back surface of the semiconductor substrate. A groove in the back surface of the semiconductor substrate surrounds the light detecting portion, as viewed in plan.