Abstract:
In a method for producing a protective cover for a device which is formed in a substrate, a first cover layer is initially deposited on the substrate, the first cover layer covering an area of the substrate which includes the device. Subsequently, an opening is formed in the first cover layer, the opening exposing that area of the substrate which includes the device. Then the opening formed in the first cover layer is filled up using a filling material. Subsequently, a second cover layer is deposited on the first cover layer and in the opening of the first cover layer which is filled up with the filling material. Thereafter, an opening is formed in the second cover layer to expose an area of the filling material. Finally, the filling material covering that area of the substrate which includes the device is removed, and the opening formed in the second cover layer is closed.
Abstract:
A bipolar transistor includes a first layer with a collector. A second layer has a base cutout for a base. A third layer includes a lead for the base. The third layer is formed with an emitter cutout for an emitter. An undercut is formed in the second layer adjoining the base cutout. The base is at least partially located in the undercut. In order to obtain a low transition resistance between the lead and the base, an intermediate layer is provided between the first and the second layer. The intermediate layer is selectively etchable with respect to the second layer. At least in the region of the undercut between the lead and the base, a base connection zone is provided that can be adjusted independent of other production conditions. The intermediate layer is removed in a contact region with the base.
Abstract:
A method for fabricating a capacitor for a semiconductor memory configuration. In this case, a selectively etchable material is applied to a conductive support, which is connected to a semiconductor body via a contact hole in an insulator layer, and patterned. A first conductive layer is applied thereon and patterned. A hole is introduced into the first conductive layer, through which hole the selectively etchable material is etched out. A cavity is produced under the first conductive layer in the process. The inner surface of the cavity and the outer surface of the first conductive layer are provided with a dielectric layer, to which a second conductive layer is applied and patterned.
Abstract:
An apparatus comprises a device layer structure, a device integrated into the device layer structure, an insulating carrier substrate and an insulating layer being continuously positioned between the device layer structure and the insulating carrier substrate, the insulating layer having a thickness which is less than 1/10 of a thickness of the insulating carrier substrate. An apparatus further comprises a device integrated into a device layer structure disposed on an insulating layer, a housing layer disposed on the device layer structure and housing the device, a contact providing an electrical connection between the device and a surface of the housing layer opposed to the device layer structure and a molding material surrounding the housing layer and the insulating layer, the molding material directly abutting on a surface of the insulating layer being opposed to the device layer structure.
Abstract:
One embodiment of the present invention relates to method for the concurrent deposition of multiple different crystalline structures on a semiconductor body utilizing in-situ differential epitaxy. In one embodiment of the present invention a preparation surface is formed, resulting in two distinct crystalline regions, a monocrystalline silicon substrate region and an isolating layer region. A monocrystalline silicon layer and an amorphous silicon layer are concurrently formed directly onto the preparation surface in the monocrystalline silicon substrate region and the isolating layer region, respectively. Deposition comprises the formation of two or more sub-layers. The process parameters can be varied for each individual sub-layer to optimize deposition characteristics.
Abstract:
The silicon bipolar transistor (100) comprises a base, with a first highly-doped base layer (105) and a second poorly-doped base layer (106) which together form the base. The emitter is completely highly-doped and mounted directly on the second base layer (106).
Abstract:
An integrated circuit that comprises a substrate and a structured layer on the substrate. The structured layer comprises an opening to the substrate, a first field and a second field on the substrate, wherein the first field and the second field, at least in part, overlap with the opening. The integrated circuit further comprises a first material in the area of the first field and a second material in the area of the second field. The first material impedes a wetting by a solder material, and the second provides a wetting by the solder material.
Abstract:
It is proposed a method of manufacturing an electronic system wherein a first substrate comprising first connection elements on a first surface of the first substrate is provided; a second substrate comprising second connection elements on a first surface of the second substrate is provided; a polymer layer is applied to at least one of the two first surfaces; the first connection elements are attached to the second connection elements; and the polymer layer is caused to swell during or after the attachment.
Abstract:
A semiconductor is disclosed. In one embodiment, the semiconductor includes a semiconductor substrate having an active area region, a covering configured to protect the active area region, and a carrier. An interspace is located between the carrier and the covering. The interspace is filled with an underfiller material is disclosed.
Abstract:
A lift-off method includes providing a material structure, applying photoresist on a surface of the material structure, partially exposing the photoresist, baking the material structure with the partially exposed photoresist applied on the surface of the material structure, developing the photoresist with an organic, polar developer, so that the photoresist is removed in a first region of the surface, and the photoresist remains in the second region of the surface, applying coating material on the surface of the material structure and the remaining photoresist, and removing the photoresist.