Abstract:
A process and tools for forming and/or releasing metal preforms, metal shapes and solder balls is described incorporating flexible molds or sheets, injection molded metal such as solder and in the case of solder balls, a liquid or gaseous environment to reduce or remove metal oxides prior to or during metal (solder) reflow to increase surface tension to form spherical or substantially spherical solder-balls.
Abstract:
The present disclosure relates to methods of making solder balls having a uniform size. More particularly, the disclosure relates to improved solder ball formation processes that prevent or reduce bridging/merging of two or more solder balls during reflow. The processes of the instant disclosure are desirable because they do not require a sifting step to obtain uniformly-sized solder balls.
Abstract:
A portion of compliant material includes four walls defining a slot. The slot has a relatively large cross-section end in fluid communication with a solder reservoir, and also has a relatively small cross-section end opposed to the relatively large cross-section end. The slot has a generally elongate rectangular shape when viewed in plan, with a length perpendicular to a scan direction, a width, parallel to the scan direction, associated with the relatively large cross section end, and a width, parallel to the scan direction, associated with the relatively small cross section end. The slot is configured in the portion of compliant material such that the relatively small cross-section end of the slot normally remains substantially closed, but locally opens sufficiently to dispense solder from the reservoir when under fluid pressure and locally unsupported by a workpiece. Methods of operation and fabrication are also disclosed.
Abstract:
A die level integrated interconnect decal manufacturing method and apparatus for implementing the method. In accordance with the technology concerning the soldering of integrated circuits and substrates, and particularly providing for solder decal methods forming and utilization, in the present instance there are employed underfills which consist of a solid film material and which are applied between a semiconductor chip and the substrate in order to enhance the reliability of a flip chip package. In particular, the underfill material increases the resistance to fatigue of controlled collapse chip connect (C4) bumps.
Abstract:
Methods for making solder balls, which can be used to bump semiconductor wafers are disclosed. Methods for bumping semiconductor wafers with the solder balls are also disclosed. The solder balls can be made using an injection molded soldering (IMS) process.
Abstract:
A method of producing standoffs in an injection molded solder (IMS) mold, which possesses cavities, each of which is filled with a solder paste using standard techniques, such as screening or IMS. This solder paste is heated to a reflow temperature at which the solder melts and forms a ball or sphere. Since solder pastes are known to reduce in volume due to the therein contained organic material burning off, the remaining solder ball will be significantly lower in volume than that of the cavity. A solder material having a lower melting point is then filled into the cavities about the solder balls. The mold and solder metal are then allowed to cool, resulting in the formation of a solid sphere of metal in the cavity surrounded by solder material of a lower melting point, which, upon transfer to a wafer, form the standoffs.
Abstract:
An electrical structure including a first substrate comprising a first electrically conductive pad, a second substrate comprising a second electrically conductive pad, and an interconnect structure electrically and mechanically connecting the first electrically conductive pad to the second electrically conductive pad. The interconnect structure comprises a non-solder metallic core structure, a first solder structure, and a second solder structure. The first solder structure electrically and mechanically connects a first portion of the non-solder metallic core structure to the first electrically conductive pad. The second solder structure electrically and mechanically connects a second portion of the non-solder metallic core structure to the second electrically conductive pad.
Abstract:
A portion of compliant material includes four walls defining a slot. The slot has a relatively large cross-section end in fluid communication with a solder reservoir, and also has a relatively small cross-section end opposed to the relatively large cross-section end. The slot has a generally elongate rectangular shape when viewed in plan, with a length perpendicular to a scan direction, a width, parallel to the scan direction, associated with the relatively large cross section end, and a width, parallel to the scan direction, associated with the relatively small cross section end. The slot is configured in the portion of compliant material such that the relatively small cross-section end of the slot normally remains substantially closed, but locally opens sufficiently to dispense solder from the reservoir when under fluid pressure and locally unsupported by a workpiece. Methods of operation and fabrication are also disclosed.
Abstract:
An electrical structure and method of forming. The electrical structure includes a first substrate comprising a first electrically conductive pad, a second substrate comprising a second electrically conductive pad, and an interconnect structure electrically and mechanically connecting the first electrically conductive pad to the second electrically conductive pad. The interconnect structure comprises a non-solder metallic core structure, a first solder structure, and a second solder structure. The first solder structure electrically and mechanically connects a first portion of the non-solder metallic core structure to the first electrically conductive pad. The second solder structure electrically and mechanically connects a second portion of the non-solder metallic core structure to the second electrically conductive pad.
Abstract:
A method in forming high-temperature alloy solder standoff in a solder bumping process, such as in injection molded solder molds. The standoffs are formed in an injection molded solder mold, by means of pre-depositing a layer of a metal at select sites, such as some of the cavities which are formed in the surface of the mold, and thereafter, filling the mold cavities with solder, utilizing standard techniques as known in the technology. The particular metal, which is deposited in at least some of the mold cavities, will alloy with the solder during or after transfer, and will result in the formation of a higher temperature alloy solder at select locations in the mold cavities.