Abstract:
A method for packaging the vacuum device includes providing a pre-packaged container having an exhaust through hole defined therein and a sealing element placed into the exhaust through hole, pumping the pre-packaged container to create a vacuum, heating and softening the sealing element to seal the exhaust through hole, and cooling the melted low-melting glass to package the pre-packaged container.
Abstract:
A reference leak (10) includes a first substrate (20), a second substrate (40) disposed and bonded on the first substrate, and predetermined numbers of leak channels (14) defined in at least one of the first and second substrates. Oblique walls of the leak channels are formed by crystal planes of the at least one of the first and second substrates, the oblique walls thereby being aligned according to such crystal planes. A method for making a reference leak is also provided.
Abstract:
An ionization vacuum gauge includes a cathode electrode, a gate electrode, and an ion collector. The gate electrode is disposed adjacent to the cathode electrode with a distance therebetween. The ion collector is disposed adjacent to the gate electrode also with a distance therebetween. The cathode electrode includes a base and a field emission film disposed thereon facing the ion collector.
Abstract:
A CNT field emitting light source (20) is provided. The light source includes an anode (202), an anode substrate (201), a cathode (214), a cathode substrate (208), a fluorescent layer (203) and a sealing means (205). The anode is configured on the anode substrate, and the cathode is configured on the cathode substrate. The anode and the cathode are oppositely configured to produce a spatial electrical field when a voltage is applied therebetween. The cathode includes an emitter layer (206), capable of emitting electrodes bombarding the cathode and matters attached thereupon when activated and controlled by the spatial electric field, and a conductive layer (207), sandwiched between the cathode substrate and the emitter layer for providing an electrically connection therebetween. The fluorescent layer is configured on a surface of the anode oppositely facing the emitter layer, so as to produce fluorescence when bombarded by electrodes emitted from the emitter layer.
Abstract:
A light source apparatus (8) includes a rear plate (80), a front plate (89) formed with an anode layer (82), and a cathode (81) interposed therebetween. The cathode includes a plurality of electrically conductive carriers (812) and a plurality of field emitters (816) formed thereon. The field emitters are uniformly distributed on anode-facing surfaces of the conductive carriers. The anode layer includes a plurality of curving portions (820) corresponding to the conductive carriers. Preferably, the field emitters extend radially outwardly from the corresponding conductive carriers. The conductive carriers are parallel with each other, and are located substantially on a common plane. Each of the conductive carriers can be connected with a pulling device arranged at least one end thereof, and an example of the pulling device is a spring. The conductive carriers may be cylindrical, prism-shaped or polyhedral.
Abstract:
A double-faced light emitting diode display includes a pair of parallel shield panels (20, 20′), and a light emitting module (30) located between the shield panels. Each shield panel includes a video contrast enhancement assembly. The light emitting module includes an opaque insulative substrate (31) with a pair of pixel matrixes symmetrically formed on opposite surfaces (310, 310′) thereof and a circuit driving system formed at at least one of the surfaces. Each pixel matrix includes a plurality of pixel units (320, 320′). Symmetrically opposite pairs of pixel units are electrically interconnected so that the shield panels can simultaneously display same images. The double-faced light emitting diode display has a simple structure, a small size, low cost and full color display capability, and can be advantageously applied in traffic signal boards, large-scale display boards, surround cinemas and so on.
Abstract:
A double-faced plasma display panel includes two parallel viewing screens (20, 20′), and a discharge structure (30) located between the viewing screens. Each viewing screen includes a transparent substrate (21, 21′), with a plurality of transparent electrodes (23, 24, 23′, 24′), a transparent dielectric layer (22, 22′), and a protection layer (25, 25′) formed at an inner surface of the transparent substrate. The discharge structure includes an opaque insulative substrate (31), with a plurality of addressing electrodes (37, 37′), an opaque dielectric layer (38, 38′), a plurality of separation walls (39, 39′), and a fluorescent layer (40, 40′) formed at each of opposite surfaces (310, 310′) thereof. Symmetrically opposite pairs of same electrodes are electrically interconnected so that the viewing screens can simultaneous display a same image. Only a single driving system is needed to achieve the simultaneous display.
Abstract:
A field emission device (100) generally includes a front substrate (101) and a rear substrate (111) opposite thereto. The front substrate is formed with an anode (102). The rear substrate is formed with cathodes (112) facing the anode. A plurality of insulating portions (121) are formed on the rear substrate, each of which is arranged between every two neighboring cathodes. A plurality of gate electrodes are formed on top surfaces of the insulating portions 121. Each of the gate electrodes has a getter layer (123) thereon.
Abstract:
A field emission device (6), in accordance with a preferred embodiment, includes a cathode electrode (61), a gate electrode (64), a separator (62), and a number of emissive units (63) composed of an emissive material. The separator includes an insulating portion (621) and a number of conductive portions (622). The insulating portion of the separator is configured between the cathode electrode and the gate electrode for insulating the cathode electrode from the gate electrode. The emissive units are configured on the separator at positions proximate two sides of the gate electrode. The emissive units are in connection with the cathode electrode via the conductive portions respectively. The emissive units are distributed on the separator adjacent to two sides of the gate electrode, thus promotes an ability of emitting electrons from the emissive material and the emitted electrons to be guided by the gate electrode toward to a smaller spot they bombards.
Abstract:
A flat panel display (7) generally includes a front substrate (79) and a rear substrate (70) opposite thereto. The front substrate is formed with an anode (78). The rear substrate is formed with a cathode (71) facing the anode. Several sidewalls (72) are interposed between the front substrate and the rear substrate. At least one of the sidewalls has a getter unit (82), and a securing member (822) for fixing the getter unit thereon. The getter unit is comprised of non-evaporable getter material. Thereby maintaining a substantial vacuum in a chamber between the front substrate and the rear substrate.